CONTENTS
Preface xi
1 Introduction 1
2 Introduction to Physics of the Solid State 8
2.1 Structure 8
2.1.2 Crystal Structures 9
2.1.3 Face-Centered Cubic Nanoparticles 12
2.1.4 Tetrahedrally Bonded Semiconductor Structures 15
2.1.5 Lattice Vibrations 18
Size Dependence of Properties 8
2.2 Energy Bands 20
2.2.2 Reciprocal Space 22
2.2.4 Effective Masses 28
2.2.5 Fermi Surfaces 29
Insulators, Semiconductors, and Conductors 20
Energy Bonds and Gaps of Semiconductors 23
2.3 Localized Particles 30
2.3.2 Mobility 31
2.3.3 Excitons 32
Donors, Acceptors, and Deep Traps 30
3 Methods of Measuring Properties
3.1 Introduction 35
3.2 Structure 36
3.2.1 Atomic Structures 36
3.2.2 Crystallography 37
3.2.3 Particle Size Determination 42
3.2.4 Surface Structure 45
3.3 Microscopy 46
3.3.1 Transmission Electron Microscopy 46
3.3.2 Field Ion Microscopy 51
3.3.3 Scanning Microscopy 51
3.4 Spectroscopy 58
3.4.3 Magnetic Resonance 68
Infrared and Raman Spectroscopy 58
Photoemission and X-Ray Spectroscopy 62
4 Properties of Individual Nanoparticles
4.1 Introduction 72
4.2 Metal Nanoclusters 74
4.2.1 Magic Numbers 74
4.2.3 Geometric Structure 78
4.2.4 Electronic Structure 81
4.2.5 Reactivity 83
4.2.6 Fluctuations 86
4.2.7 Magnetic Clusters 86
4.2.8 Bulk to Nanotransition 88
4.3 Semiconducting Nanoparticles 90
4.3.1 Optical Properties 90
4.3.2 Photofkagmentation 92
4.3.3 Coulombic Explosion 93
4.4 Rare Gas and Molecular Clusters 94
4.4.1 Inert-Gas Clusters 94
4.4.2 Superfluid Clusters 95
4.4.3 Molecular Clusters 96
Theoretical Modeling of Nanoparticles 75
4.5 Methods of Synthesis 97
4.5.1 RF Plasma 97
4.5.2 Chemical Methods 98
4.5.3 Thermolysis 99
4.5.4 Pulsed Laser Methods 100
4.6 Conclusion 101
5 Carbon Nanostructures
5.1 Introduction 103
5.2 Carbon Molecules 103
5.2.1 Nature of the Carbon Bond 103
5.2.2 New Carbon Structures 105
5.3 Carbon Clusters 106
5.3.1 Small Carbon Clusters 106
5.3.2 Discovery of c60 107
5.3.4 Alkali-Doped c60 110
5.3.5 Superconductivity in c60 112
5.3.7 Other Buckyballs 113
Structure of c60 and Its Crystal 110
Larger and Smaller Fullerenes 113
5.4 Carbon Nanotubes 114
5.4.1 Fabrication 114
5.4.2 Structure 117
5.4.3 Electrical Properties 11 8
5.4.4 Vibrational Properties 122
5.4.5 Mechanical Properties 123
5.5 Applications of Carbon Nanotubes 125
5.5.2 Computers 126
5.5.3 Fuel Cells 127
5.5.4 Chemical Sensors 128
5.5.5 Catalysis 129
5.5.6 Mechanical Reinforcement 130
Field Emission and Shielding 125
6 Bulk Nanostructured Materials
6.1 Solid Disordered Nanostructures 133
6.1.1 Methods of Synthesis 133
6.1.2 Failure Mechanisms of Conventional
Grain-Sized Materials 137
6.1.3 Mechanical Properties 139
6.1.4 Nanostructured Multilayers 141
6.1.5 Electrical Properties 142
6.1.6 Other Properties 147
6.1.8 Porous Silicon 150
Metal Nanocluster Composite Glasses 148
6.2 Nanostructured Crystals 153
6.2.1 Natural Nanocrystals 153
Computational Prediction of Cluster Lattices 153
Arrays of Nanoparticles in Zeolites 154
Crystals of Metal Nanoparticles 157
6.2.5 Nanoparticle Lattices in Colloidal Suspensions 158
6.2.6 Photonic Crystals 159
7 Nanostructured Ferromagnetism
7.1 Basics of Ferromagnetism 165
7.3 Dynamics of Nanomagnets 172
7.4 Nanopore Containment of Magnetic Particles 176
7.5 Nanocarbon Ferromagnets 177
7.7 Ferrofluids 186
Effect of Bulk Nanostructuring of Magnetic Properties 170
Giant and Colossal Magnetoresistance 18 1
8 Optical and Vibrational Spectroscopy
8.1 Introduction 194
8.2 Infrared Frequency Range 196
8.2.2 Infrared Surface Spectroscopy 198
8.2.3 Raman Spectroscopy 203
8.2.4 Brillouin Spectroscopy 210
Spectroscopy of Semiconductors; Excitons 196
8.3 Luminescence 213
8.3.1 Photoluminescence 213
8.3.2 Surface States 215
8.3.3 Thermoluminescence 221
8.4 Nanostructures in Zeolite Cages 222
9 Quantum Wells, Wires, and Dots
9.1 Introduction 226
Preparation of Quantum Nanostructures 227
Size and Dimensionality Effects 231
9.3.1 Size Effects 231
9.3.4 Potential Wells 236
9.3.5 Partial Confinement 241
Conduction Electrons and Dimensionality 233
Fermi Gas and Density of States 234
Properties Dependent on Density of States 242
9.4 Excitons 244
9.5 Single-Electron Tunneling 245
9.6 Applications 248
9.6.1 Infrared Detectors 248
9.6.2 Quantum Dot Lasers 251
9.7 Superconductivity 253
10 Self-Assembly and Catalysis
10.1 Self-Assembly 257
10.1.1 Process of Self-Assembly 257
10.1.2 Semiconductor Islands 258
10.1.3 Monolayers 260
10.2 Catalysis 264
10.2.1 Nature of Catalysis 264
10.2.3 Porous Materials 268
10.2.4 Pillared Clays 273
10.2.5 Colloids 277
Surface Area of Nanoparticles 264
11 Organic Compounds and Polymers
1 1.1 Introduction 28 1
1 1.2 Forming and Characterizing Polymers 283
1 1.2.1 Polymerization 283
11.2.2 Sizes of Polymers 284
11.3 Nanocrystals 285
11.3.2 Polydiacetylene Types 289
Condensed Ring Types 285
11.4 Polymers 292
1 1.4.1 Conductive Polymers 292
1 1.4.2 Block Copolymers 293
11.5 Supramolecular Structures 295
1 1.5.1 Transition-Metal-Mediated Types 295
1 1.5.2 Dendritic Molecules 296
11.5.3 Supramolecular Dendrimers 302
11.5.4 Micelles 305
12 Biological Materials
12.1 Introduction 3 10
12.2 Biological Building Blocks 3 1 1
Sizes of Building Blocks and Nanostructures 3 11
Polypeptide Nanowire and Protein Nanoparticle 3 14
12.3 Nucleic Acids 3 16
12.3.1 DNA Double Nanowire 316
12.3.2 Genetic Code and Protein Synthesis 322
12.4 Biological Nanostructures 324
12.4.1 Examples of Proteins 324
12.4.2 Micelles and Vesicles 326
12.4.3 Multilayer Films 329
13 Nanomachines and Nanodevices
13.1 Microelectromechanical Systems (MEMSs) 332
13.2 Nanoelectromechanical Systems (NEMSs) 335
13.2.1 Fabrication 335
13.2.2 Nanodevices and Nanomachines 339
13.3 Molecular and Supramolecular Switches 345
A Formulas for Dimensionality
A. 1 Introduction 357
A.2 Delocalization 357
A.3 Partial Confinement 358
B Tabulations of Semiconducting Material Properties
Index