Fatigue of Textile Composites Edited by Valter Carvelli and Stepan V. Lomov

By

Fatigue of Textile Composites
Edited by Valter Carvelli and Stepan V. Lomov

Fatigue of Textile

Contents

List of contributors xi
Woodhead Publishing Series in Composites Science and Engineering xiii
Preface xvii

Part One Concepts and methods 1
1 A conceptual framework for studies of durability in composite materials 3
R. Talreja
1.1 Introduction and background 3
1.2 Fundamentals of material durability 4
1.3 A conceptual framework for fatigue durability 6
1.4 Extension of the baseline fatigue life diagram to laminates and other fiber architectures 20
1.5 Models for fatigue life prediction 23
1.6 Concluding remarks 25
References 25
2 The cycle jump concept for modelling high-cycle fatigue in composite materials 29
W. Van Paepegem
2.1 Introduction 29
2.2 What are phenomenological residual stiffness models? 30
2.3 The cycle jump concept 32
2.4 Finite element implementation of the cycle jump concept 44
2.5 Conclusions 53
2.6 Future trends and challenges 53
References 53
3 Experimental methods and standards for fatigue of fiber-reinforced composites 57
A.N. Anoshkin, V.Yu. Zuiko
3.1 Introduction 57
3.2 AFNOR: the French National Organization for Standardization
(Association Française de Normalisation) 59
3.3 ISO: International Organization for Standardization 61
3.4 JIS: Japan Industrial Standards 64
3.5 ASTM: American Society for Testing and Materials 65
3.6 Discussion 69
References 70
4 Databases for fatigue analysis in composite materials 75
K.A.M. Vallons
4.1 Introduction 75
4.2 FACT database 76
4.3 OptiDat database 77
4.4 SNL/MSU/DOE database 78
4.5 Concluding remarks 81
References 82

Part Two Fatigue at micro-level 83
5 Fatigue analysis of carbon, glass and other fibres 85
Y. Abdin, A. Jain, S.V. Lomov, V. Carvelli
5.1 Introduction to fatigue of fibres 85
5.2 Experimental methods for characterization of fatigue
behaviour of fibres 87
5.3 Fatigue analysis of glass fibres 89
5.4 Fatigue analysis of carbon fibres 90
5.5 Fatigue analysis of other types of fibres 93
5.6 Modelling of fatigue strength of fibres and bundles 97
5.7 Effect of environmental factors on the fatigue behaviour of fibres 98
5.8 Conclusions and future challenges 99
References 100
6 Multiaxial fatigue of a unidirectional ply: an experimental
top-down approach 105
I. Koch, M. Gude
6.1 Introduction 105
6.2 Bottom-up strategy versus top-down approach 107
6.3 Failure mode-related fatigue model 108
6.4 Application 122
6.5 Conclusion and outlook 123
Acknowledgements 124
References 124
7 Modelling the crack initiation in unidirectional laminates under multiaxial fatigue loading 127
P.A. Carraro, M. Quaresimin
7.1 Introduction 127
7.2 Peculiarities of fatigue failure 129
7.3 Calculation of local stresses 131
7.4 Validation 133
7.5 Constant-life diagrams 139
7.6 Conclusions 143
References 143

Part Three Phenomenology and modelling of fatigue
in different textile composites 147
8 2D woven fabric composites under fatigue loading of different types and in different environmental conditions 149
M. Kawai
8.1 Introduction 149
8.2 Effect of stress ratio 153
8.3 Effect of temperature 159
8.4 Comparison between the S–N curves for unidirectional/
cross-ply laminates and woven carbon composites 164
8.5 Effect of fiber orientation 166
8.6 Modeling of temperature effect 173
8.7 Effect of variation in R-ratio 180
8.8 Conclusions 183
Acknowledgments 187
References 187
9 Fatigue response and damage evolution in 2D textile composites 193
M. Quaresimin, M. Ricotta
9.1 Introduction 193
9.2 Experimental program 194
9.3 Notch sensitivity under static loadings 196
9.4 Material response to cyclic loadings 198
9.5 Damage evolution under cyclic loadings 203
9.6 Crack density curves 214
9.7 Conclusions 217
References 218
10 Fatigue damage evolution in 3D textile composites 223
V. Carvelli, S.V. Lomov
10.1 Introduction 223
10.2 Fatigue experimental details 224
10.3 Single-ply non-crimp 3D orthogonal weave E-glass/epoxy composite 225
10.4 3D rotary braided carbon/epoxy composite 237
10.5 Non-crimp stitched carbon/epoxy composite 243
10.6 Conclusions 250
10.7 Future challenges 251
Acknowledgements 251
References 251
11 Fatigue of 3D textile-reinforced composites 255
A.P. Mouritz
11.1 Introduction 255
11.2 Fatigue properties of 3D woven textile composites 257
11.3 Fatigue properties of stitched textile composites 259
11.4 Fatigue properties of z-anchor textile composites 264
11.5 Fatigue properties of z-pinned composites 265
11.6 Summary 268
References 269
12 Fatigue of non-crimp fabric composites 275
K.A.M. Vallons
12.1 Introduction 275
12.2 Non-crimp fabric (NCF) composites 275
12.3 Fatigue of NCF composites 279
12.4 Summary 290
References 290
13 Fatigue models for woven textile composite laminates 295
W. Van Paepegem
13.1 Introduction 295
13.2 Classification of fatigue models 297
13.3 Review of fatigue models and lifetime prediction methodologies for textile composites 299
13.4 Challenges for industrial application of existing fatigue models 302
13.5 Feasibility of multiscale modelling of fatigue damage 314
13.6 Conclusions 318
13.7 Future trends and challenges 318
13.8 Sources of further information and advice 318
References 319
14 Modelling high-cycle fatigue of textile composites on the unit cell level 327
S.V. Lomov, J. Xu
14.1 Introduction: the general approach to high-cycle fatigue of textile composites on the unit cell level 327
14.2 The fatigue model for textile composites 328
14.3 Example of fatigue modelling for textile composites 341
14.4 Conclusion 347
Acknowledgements 347
References 347

Part Four Applications 351
15 Fatigue testing and online inspection of carbon textile composites
for aeronautical applications 353
W. Van Paepegem
15.1 Introduction 353
15.2 Materials and methods 355
15.3 Static characterization 356
15.4 Fatigue characterization 362
15.5 Conclusions 380
15.6 Future trends and challenges 380
References 380
16 Textile composites in the automotive industry 383
P. Abel, C. Lauter, T. Gries, T. Troester
16.1 Introduction 383
16.2 Automotive composite lightweight design 385
16.3 Production of automotive textile composite components 390
16.4 Fatigue aspects of automotive series production 395
16.5 Fatigue aspects of multi-material and hybrid designs 396
16.6 Conclusions 397
References 398
17 Fatigue life in textile composites used for wind energy engineering 403
J. Zangenberg, P. Brøndsted
17.1 Introduction 403
17.2 Baseline materials 405
17.3 Fabric structure 410
17.4 Fatigue methodologies 413
17.5 Fatigue characteristics of textiles 425
17.6 Blade design concepts 435
17.7 Future challenges for composites in wind energy engineering 438
References 439
18 Construction engineering: fatigue life prediction of adhesively bonded textile composites 441
A.P. Vassilopoulos
18.1 Introduction 441
18.2 Types of fiber-reinforced polymer (FRP) textile composite structural components used in civil engineering applications 447
18.3 Experimental investigations and modeling of adhesively bonded connections 453
18.4 Fatigue life modeling and prediction 462
18.5 Conclusions 476
References 477
Index 483

This book is US$10
To get free sample pages OR Buy this book


Share this Book!

Leave a Comment


This site uses Akismet to reduce spam. Learn how your comment data is processed.