Nanofibers and Nanotechnology in Textiles Edited by P. J. Brown and K. Stevens

By

Nanofibers and Nanotechnology in Textiles
Edited by P. J. Brown and K. Stevens

Nanofibers and nanotechnology in textiles

Contents

Contributor contact details xiii

Part I Nanofiber production
1 Electrospinning of nanofibers and the charge injection method 3
D. R. SALEM, Charge Injection Technologies Inc., USA
1.1 Introduction 3
1.2 Principles of electrostatic atomization 3
1.3 Electrospraying and electrospinning by the capillary method 5
1.4 Electrospraying and electrospinning by the charge injection method 12
1.5 References 20
2 Producing nanofiber structures by electrospinning for tissue engineering 22
F. K. KO, The University of British Columbia, Canada and
M. R. GANDHI, Drexel University, USA
2.1 Introduction 22
2.2 Fabrication of nanofibrous scaffolds 28
2.3 Characterization of nanofibrous scaffolds 30
2.4 Cell–scaffold interaction 36
2.5 Summary and conclusion 42
2.6 Acknowledgments 43
2.7 References 43
3 Continuous yarns from electrospun nanofibers 45
E. SMIT, U. BÜTTNER and R. D. SANDERSON, Stellenbosch University,
South Africa
3.1 Introduction 45
3.2 Using electrospun nanofibers: background and terminology 45
3.3 Controlling fiber orientation 48
3.4 Producing noncontinuous or short yarns 49
3.5 Producing continuous yarns 52
3.6 Summary and future trends 66
3.7 Sources of further information and advice 67
3.8 References 68
4 Producing polyamide nanofibers by electrospinning 71
M. AFSHARI, R. KOTEK and A. E. TONELLI, North Carolina State
University, USA and D.-W. JUNG, Hyosung Corporation,
South Korea
4.1 Introduction 71
4.2 The electrospinning process 71
4.3 Properties of electrospun nanofibers 73
4.4 Measuring the effects of different spinning conditions and the use of high molecular weight polymers on the properties of electrospun nanofibers 75
4.5 Improving the properties of electrospun nanofibers: experimental results 77
4.6 Conclusions 85
4.7 References 87
5 Controlling the morphologies of electrospun nanofibres 90
T. LIN and X. G. WANG, Deakin University, Australia
5.1 Introduction 90
5.2 The electrospinning process and fibre morphology 91
5.3 Polymer concentration and fibre diameter 93
5.4 Fibre bead formation and fibre surface morphology 96
5.5 Controlling fibre alignment and web morphologies 100
5.6 Bicomponent cross-sectional nanofibres 103
5.7 Future trends 107
5.8 Acknowledgements 108
5.9 References 108

Part II Carbon nanotubes and nanocomposites 111
6 Synthesis, characterization and application of carbon nanotubes: the case of aerospace engineering 113
M. REGI, University of Rome ‘La Sapienza’, Italy
6.1 Introduction 113
6.2 The development and structure of carbon nanotubes 115
6.3 Synthesis of carbon nanotubes 124
6.4 Characterization techniques 140
6.5 Purification techniques 152
6.6 The use of carbon nanotubes in aerospace engineering 157
6.7 Nanostructured composite materials for aerospace applications 162
6.8 Nanostructured solid propellants for rockets 170
6.9 Frequency selective surfaces for aerospace applications 175
6.10 Other aerospace applications of carbon nanotubes 182
6.11 Conclusions 184
6.12 Acknowledgments 184
6.13 References 185
7 Carbon nanotube and nanofibre reinforced polymer fibres 194
M. S. P. SHAFFER, Imperial College London, UK and
J. K. W. SANDLER, University of Bayreuth, Germany
7.1 Introduction 194
7.2 Synthesis and properties of carbon nanotubes 197
7.3 Developing nanotube/nanofibre–polymer composites 201
7.4 Adding nanotubes and nanofibres to polymer fibres 206
7.5 Analysing the rheological properties of nanotube/nanofibre–polymer composites 208
7.6 Analysing the microstructure of nanotube/nanofibre– polymer composites 212
7.7 Mechanical, electrical and other properties of nanocomposite fibres 216
7.8 Future trends 221
7.9 References 222
8 Structure and properties of carbon nanotube-polymer fibers using melt spinning 235
R. E. GORGA, North Carolina State University, USA
8.1 Introduction 235
8.2 Producing carbon nanotube-polymer fibers 236
8.3 Thermal characterization 237
8.4 Fiber morphology 238
8.5 Mechanical properties of fibers 245
8.6 Conclusions and future trends 251
8.7 Sources of further information and advice 252
8.8 Acknowledgments 252
8.9 References 253
9 Multifunctional polymer nanocomposites for industrial applications 256
S. J. BULL, University of Newcastle, UK
9.1 Introduction 256
9.2 The development of functional polymer nanocomposites 257
9.3 Improving the mechanical properties of polymer nanocomposites 258
9.4 Improving the fire-retardant properties of polymer nanocomposites 260
9.5 Improving the tribological properties of polymer nanocomposites 262
9.6 Case-study: development of a nanocomposite sliding seal ring 265
9.7 Enhancing the functionality of polymer nanocomposites 273
9.8 Conclusions 275
9.9 Acknowledgements 275
9.10 References 275
10 Nanofilled polypropylene fibres 281
M. SFILIGOJ SMOLE and K. STANA KLEINSCHEK, University of
Maribor, Slovenia
10.1 Introduction 281
10.2 Polymer layered silicate nanocomposites 282
10.3 The structure and properties of layered silicate polypropylene nanocomposites 284
10.4 Nanosilica filled polypropylene nanocomposites 289
10.5 Calcium carbonate and other additives 291
10.6 Conclusion 293
10.7 References 293

Part III Improving polymer functionality 299
11 Nanostructuring polymers with cyclodextrins 301
A. E. TONELLI, North Carolina State University, USA
11.1 Introduction 301
11.2 Formation and characterization of polymer–cyclodextrin– inclusion compounds 302
11.3 Properties of polymer–cyclodextrin–inclusion compounds 304
11.4 Homo- and block copolymers coalesced from their cyclodextrin–inclusion compounds 308
11.5 Constrained polymerization in monomer–cyclodextrin– inclusion compounds 310
11.6 Coalescence of common polymer–cyclodextrin–inclusion compounds to achieve fine polymer blends 311
11.7 Temporal and thermal stabilities of polymers nanostructured with cyclodextrins 312
11.8 Cyclodextrin-modified polymers 313
11.9 Polymers with covalently bonded cyclodextrins 314
11.10 Conclusions 316
11.11 References 316
12 Dyeable polypropylene via nanotechnology 320
Q. FAN and G. MANI, University of Massachusetts Dartmouth, USA
12.1 Introduction 320
12.2 Dyeing techniques for unmodified polypropylene 321
12.3 Modified polypropylene for improved dyeability using copolymerization and other techniques 323
12.4 Polyblending and other techniques for improving polypropylene dyeability 324
12.5 Dyeing polypropylene nanocomposites 326
12.6 Using X-ray diffraction analysis and other techniques to assess dyed polypropylene nanocomposites 334
12.7 Conclusions 345
12.8 Acknowledgments 346
12.9 References 346
13 Polyolefin/clay nanocomposites 351
R. A. KALGAONKAR and J. P. JOG, National Chemical Laboratory, India
13.1 Introduction 351
13.2 Organomodification of clays 354
13.3 Polymer/clay nanocomposites 356
13.4 Polypropylene/clay nanocomposites 360
13.5 Polyethylene/clay nanocomposites 367
13.6 Higher polyolefin/clay nanocomposites 372
13.7 Conclusions 374
13.8 References 381
14 Multiwall carbon nanotube–nylon-6 nanocomposites from polymerization 386
Y. K. KIM and P. K. PATRA, University of Massachusetts Dartmouth,
USA
14.1 Introduction 386
14.2 Nanocomposite synthesis and production 387
14.3 Characterization techniques 388
14.4 Properties of multiwall carbon nanotube–nylon-6 nanocomposite fibers 391
14.5 Conclusions 404
14.6 Acknowledgments 405
14.7 References 406

Part IV Nanocoatings and surface modification techniques 407
15 Nanotechnologies for coating and structuring of textiles 409
T. STEGMAIER, M. DAUNER, V. VON ARNIM, A. SCHERRIEBLE,
A. DINKELMANN and H. PLANCK, ITV Denkendorf, Germany
15.1 Introduction 409
15.2 Production of nanofiber nonwovens using electrostatic spinning 410
15.3 Anti-adhesive nanocoating of fibers and textiles 417
15.4 Water- and oil-repellent coatings by plasma treatment 418
15.5 Self-cleaning superhydrophobic surfaces 421
15.6 Sources of further information and advice 427
15.7 References 427
16 Electrostatic self-assembled nanolayer films for cotton fibers 428
G. K. HYDE and J. P. HINESTROZA, Cornell University, USA
16.1 Introduction 428
16.2 Principles of electrostatic self-assembly for creating nanolayer films 428
16.3 Advantages and disadvantages of electrostatic self-assembly 431
16.4 Substrates used for electrostatic self-assembly 432
16.5 Polyelectrolytes used for electrostatic self-assembly 434
16.6 Analyzing self-assembled nanolayer films on cotton 436
16.7 Conclusions: functional textiles for protection, filtration and other applications 439
16.8 References 440
17 Nanofabrication of thin polymer films 448
I. LUZINOV, Clemson University, USA
17.1 Introduction 448
17.2 Macromolecular platform for nanofabrication 449
17.3 ‘Grafting from’ technique for synthesis of polymer films 451
17.4 ‘Grafting to’ technique for synthesis of polymer films 455
17.5 Synthesis of smart switchable coatings 458
17.6 Synthesis of ultrahydrophobic materials 464
17.7 Conclusions 466
17.8 Acknowledgments 466
17.9 References 467
18 Hybrid polymer nanolayers for surface modification of fibers 470
S. MINKO and M. MOTORNOV, Clarkson University, USA
18.1 Introduction: smart textiles via thin hybrid films 470
18.2 Mechanisms of responsive behavior in thin polymer films 471
18.3 Polymer–polymer hybrid layers 478
18.4 Polymer–particles hybrid layers 484
18.5 Hierarchical assembly of nanostructured hybrid films 485
18.6 Future trends 489
18.7 Sources of further information and advice 490
18.8 Acknowledgment 490
18.9 References 490
19 Structure–property relationships of polypropylene nanocomposite fibres 493
C. Y. LEW, University of Oxford, UK and G. M. MCNALLY,
Queen’s University Belfast, UK
19.1 Introduction 493
19.2 Materials, processing and characterisation techniques 495
19.3 Structure and morphology 497
19.4 Phase homogeneity and spinline stability 502
19.5 Optical birefringence and infrared activation 505
19.6 Crystallisation behaviour and mechanical performance 509
19.7 Exfoliation by extensional flow deformation 513
19.8 Conclusions 514
19.9 References 515

This book is US$10
To get free sample pages OR Buy this book


Share this Book!

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.