Contents
Chapter 1 Structure of the Carbon Atom ………………………………………………………………. 1
1.1. Introduction to the Element Carbon, its Isotopes and Allotropes ………………………. 1
1.2. Structure of Carbon………………………………………………………………………………………. 2
1.2.1. Structure of the Atom ………………………………………………………………………… 2
1.2.2. Atomic Spectra and Quantum Theory ………………………………………………….. 2
1.2.3. Directional Characteristics of Atomic Orbitals ………………………………………. 6
1.2.4. Hybridization of Atomic Orbitals ………………………………………………………… 7
1.2.5. Covalence and Molecular Orbitals ……………………………………………………….. 9
References ………………………………………………………………………………………………………….. 13
Chapter 2 The Forms of Carbon…………………………………………………………………………. 15
2.1. The Allotropes of Carbon ……………………………………………………………………………. 15
2.2. The Carbon Phase Diagram …………………………………………………………………………. 16
2.3. Diamond ……………………………………………………………………………………………………. 17
2.3.1. Occurrence, Production and Uses of Diamond ……………………………………. 17
2.3.1.1. Natural diamonds………………………………………………………………. 17
2.3.1.2. High pressure synthetic diamonds………………………………………… 17
2.3.1.3. Polycrystalline diamond (PCD)……………………………………………. 18
2.3.1.4. Chemical Vapor Deposition (CVD) diamond………………………… 18
2.3.1.5. Diamond-like carbon (DLC)……………………………………………….. 18
2.3.2. Classification of Diamonds ……………………………………………………………….. 19
2.3.3. Identification of Diamond…………………………………………………………………. 19
2.3.4. The Crystal Structure of Diamond …………………………………………………….. 19
2.3.5. The Properties of Diamond……………………………………………………………….. 20
2.3.5.1. Density……………………………………………………………………………… 20
2.3.5.2. Mechanical properties ………………………………………………………… 22
2.3.5.2.1. Hardness …………………………………………………………… 22
2.3.5.2.2. Friction …………………………………………………………….. 22
2.3.5.2.3. Elastic properties ……………………………………………….. 22
2.3.5.2.4. Strength ……………………………………………………………. 23
2.3.5.3. Thermal properties …………………………………………………………….. 23
2.3.5.4. Optical properties ………………………………………………………………. 23
2.3.5.5. Electrical properties ……………………………………………………………. 23
2.3.5.6. Graphitization …………………………………………………………………… 23
2.3.5.7. Chemical resistance ……………………………………………………………. 23
2.4. Graphite …………………………………………………………………………………………………….. 24
2.4.1. Introduction…………………………………………………………………………………….. 24
2.4.2. Occurrence, Production and Uses of Graphite …………………………………….. 24
2.4.2.1. Natural graphite ………………………………………………………………… 24
2.4.2.2. Kish graphite …………………………………………………………………….. 24
2.4.2.3. Synthetic graphite………………………………………………………………. 25
2.4.3. Structure of Graphite ……………………………………………………………………….. 27
2.4.4. The Properties of Graphite………………………………………………………………… 31
2.4.4.1. Density……………………………………………………………………………… 31
2.4.4.2. Mechanical properties ………………………………………………………… 32
2.4.4.2.1. Elastic properties ……………………………………………….. 33
2.4.4.3. Thermal properties …………………………………………………………… 35
2.4.4.4. Electrical properties ………………………………………………………….. 35
2.4.4.5. Chemical resistance…………………………………………………………… 36
2.5. Pyrolytic Carbon and Pyrolytic Graphite……………………………………………………… 38
2.6. Glass-like Carbon ……………………………………………………………………………………… 41
2.7. Carbon Fibers …………………………………………………………………………………………… 42
2.8. Graphite Whiskers …………………………………………………………………………………….. 42
2.9. Vapor-Grown Carbon Fibers (VGCF) and Catalytic
Chemical Vapor-Deposited (CCVD) Filaments …………………………………………….. 43
2.10. Other Forms of Carbon……………………………………………………………………………… 44
2.10.1. Carbon Black……………………………………………………………………………….. 44
2.10.2. Charcoal ……………………………………………………………………………………… 45
2.10.3. Coal ……………………………………………………………………………………………. 45
2.10.4. Coke …………………………………………………………………………………………… 46
2.10.5. Soot ……………………………………………………………………………………………. 46
2.11. New Forms of Carbon……………………………………………………………………………….. 46
2.11.1. Fullerenes…………………………………………………………………………………….. 46
2.11.1.1. Discovery and production of fullerenes …………………………… 46
2.11.1.2. Properties and uses of fullerenes …………………………………….. 53
2.11.2. Carbon Nanotubes ……………………………………………………………………….. 56
2.11.2.1. Discovery and production of carbon nanotubes ………………. 56
2.11.3. Hyperfullerenes …………………………………………………………………………….. 59
2.12. Summary of Allotropic Forms of Carbon…………………………………………………….. 60
References ………………………………………………………………………………………………………….. 60
Chapter 3 History and Early Development of Carbon Fibers …………………………………. 65
3.1. The Early Inventors …………………………………………………………………………………….. 65
3.2. Work in the USA ……………………………………………………………………………………….. 66
3.2.1. Black ‘Orlon’ …………………………………………………………………………………… 66
3.2.2. Some Early US Carbon Fibers…………………………………………………………… 67
3.2.3. More Reent US Carbon Fibers………………………………………………………….. 71
3.3. Work in Japan ……………………………………………………………………………………………. 71
3.3.1. Early Work in Japan with PAN Precursor ………………………………………….. 71
3.3.2. Work in Japan with Pitch Precursors …………………………………………………. 72
3.4. Work in the UK with PAN Precursors ………………………………………………………….. 72
3.4.1. Work at RAE, Farnborough……………………………………………………………… 72
3.4.1.1. The RAE work with carbon fiber and cross-licencing
of their patent……………………………………………………………………. 72
3.4.1.2. Surface treatment ………………………………………………………………. 78
3.4.1.3. Testing and properties of single filaments and composites………. 78
3.4.1.4. Composite fabrication ………………………………………………………… 79
3.4.1.5. Friction and wear ………………………………………………………………. 79
3.4.2. Work at the Atomic Energy Research Establishment, Harwell………………. 79
3.4.2.1. Fiber production ……………………………………………………………….. 79
3.4.2.2. Surface treatment ………………………………………………………………. 84
3.4.2.3. Testing and properties of single filaments
and composites ………………………………………………………………….. 84
3.4.2.4. Carbon fiber reinforced ceramics, glass and cement……………….. 86
3.4.2.5. Carbon fiber reinforced metal composites. ……………………………. 87
3.4.2.6. Composite fabrication and design………………………………………… 89
3.4.3. Work at Rolls Royce, Derby……………………………………………………………… 89
3.4.3.1. Fiber production ……………………………………………………………….. 89
3.4.3.2. Factors affecting tensile strength of carbon fibers ………………….. 91
3.4.3.3. Resin formulation and composite fabrication………………………… 92
3.4.3.4. Carbon fiber reinforced metal composites …………………………….. 97
3.4.4. Work at Morganite Modmor, London ……………………………………………….. 97
3.4.5. Work at Courtaulds, Coventry…………………………………………………………… 98
3.4.5.1. Carbon fiber production …………………………………………………….. 98
3.4.5.2. Early work with X-ray diffraction to establish structure………… 100
3.4.5.3. Precursor technology …………………………………………………………. 101
3.4.5.4. Oxidation stage…………………………………………………………………. 103
3.4.5.5. Surface treatment ……………………………………………………………… 111
3.4.5.6. Testing and properties of virgin carbon fiber
and composites …………………………………………………………………. 112
3.4.5.7. Production procedures using carbon fiber ……………………………. 112
3.4.5.8. Use and design of carbon fiber in composite materials ………….. 113
3.5. Early UK Prepreggers………………………………………………………………………………… 114
3.5.1. Ciba (ARL) Ltd., Duxford………………………………………………………………. 114
3.5.2. Courtaulds Ltd., Coventry ………………………………………………………………. 114
3.5.3. Fothergill and Harvey Ltd. (F&H), Littleborough ……………………………… 115
3.5.4. Rotorway Components Ltd., Clevedon……………………………………………… 115
References ………………………………………………………………………………………………………… 115
Chapter 4 Precursors for Carbon Fiber Manufacture …………………………………………… 121
4.1. Introduction ……………………………………………………………………………………………… 121
4.2. PAN Precursors ………………………………………………………………………………………… 121
4.2.1. History………………………………………………………………………………………….. 122
4.2.1.1. Commercially available PAN fiber ……………………………………… 122
4.2.2. Requirements for a PAN Precursor ………………………………………………….. 123
4.2.3. Homopolymer PAN ……………………………………………………………………….. 125
4.2.4. Comonomers………………………………………………………………………………….. 125
4.2.5. Methods of Polymerization ……………………………………………………………… 130
4.2.5.1. Solution polymerization …………………………………………………….. 130
4.2.5.2. Aqueous dispersion polymerization …………………………………….. 134
4.2.6. Methods of Spinning ………………………………………………………………………. 136
4.2.6.1. Wet spinning…………………………………………………………………….. 136
4.2.6.2. Dry spinning…………………………………………………………………….. 136
4.2.6.3. Air gap spinning……………………………………………………………….. 136
4.2.6.4. Melt spinning……………………………………………………………………. 139
4.2.7. Processing Stages ……………………………………………………………………………. 141
4.2.8. Modification of Spun Fiber……………………………………………………………… 145
4.2.8.1. Stretching…………………………………………………………………………. 145
4.2.8.2. Chemical treatment …………………………………………………………… 145
4.2.9. Structure of PAN Fibers …………………………………………………………………. 146
4.3. Cellulosic Precursors………………………………………………………………………………….. 148
4.3.1. Historical Introduction ……………………………………………………………………. 148
4.3.2. Viscose Rayon Process ……………………………………………………………………. 150
4.3.2.1. Introduction……………………………………………………………………… 150
4.3.2.2. Steeping stage …………………………………………………………………… 150
4.3.2.3. Shredding and ageing stages ………………………………………………. 151
4.3.2.4. Xanthation stage ………………………………………………………………. 152
4.3.2.5. Mixing and ripening stages ………………………………………………… 152
4.3.2.6. Spinning stage…………………………………………………………………… 152
4.3.2.7. Final treatment stage…………………………………………………………. 153
4.3.3. Structure of Rayon Fiber……………………………………………………………….. 154
4.4. Pitch Precursors ………………………………………………………………………………………… 156
4.4.1. Introduction…………………………………………………………………………………… 156
4.4.1.1. Petroleum pitch ………………………………………………………………… 157
4.4.1.2. Coal tar pitch …………………………………………………………………… 158
4.4.2. Characterization of the Pitch …………………………………………………………… 158
4.4.3. Isotropic Pitches …………………………………………………………………………….. 160
4.4.4. Preparation of Mesophase Pitches ……………………………………………………. 161
4.4.4.1. Introduction……………………………………………………………………… 161
4.4.4.2. Production of mesophase by pyrolysis …………………………………. 162
4.4.4.3. Production of mesophase by solvent extraction…………………….. 164
4.4.4.4. Production of mesophase by hydrogenation…………………………. 164
4.4.4.5. Production of mesophase by catalytic
modification……………………………………………………………………… 165
4.4.5. Melt Spinning Mesophase Precursor Fibers……………………………………….. 166
4.4.6. Structure of Pitch Precursor …………………………………………………………….. 171
4.5. Other Precursors ……………………………………………………………………………………….. 171
References ………………………………………………………………………………………………………… 175
Chapter 5 Carbon Fiber Production using a PAN Precursor ………………………………… 185
5.1. Introduction ……………………………………………………………………………………………… 185
5.2. Carbon Fiber Manufacturers………………………………………………………………………. 185
5.3. World Supply of PAN based Carbon Fiber………………………………………………….. 186
5.4. Manufacturing Costs of PAN based Carbon Fiber ……………………………………….. 187
5.5. Choice of Precursor …………………………………………………………………………………… 191
5.6. Desirable Attributes of a PAN based Precursor Polymer and
its Subsequent Production ………………………………………………………………………….. 192
5.7. Types of PAN based Carbon Fiber……………………………………………………………… 194
5.8. A Carbon Fiber Production Line ………………………………………………………………… 194
5.8.1. Precursor Station………………………………………………………………………….. 194
5.8.2. Oxidation…………………………………………………………………………………….. 195
5.8.3. Oxidation Plant ……………………………………………………………………………. 196
5.8.4. Removal of Effluent Gases Evolved in the Oxidation Process……………. 200
5.8.5. Oxidized PAN Fiber……………………………………………………………………… 200
5.8.6. Low Temperature Carbonization ……………………………………………………. 200
5.8.7. High Temperature Carbonization …………………………………………………… 200
5.8.8. High Modulus Fiber Production…………………………………………………….. 202
5.8.9. Shrinkage during the Carbon Fiber Process …………………………………….. 203
5.8.10. Surface Treatment ………………………………………………………………………… 203
5.8.11. Sizing ………………………………………………………………………………………….. 203
5.8.12. Collection ……………………………………………………………………………………. 203
5.9. Fine Structure and Texture of PAN based Carbon Fibers ……………………………… 203
5.10. Aspects of Stabilization ……………………………………………………………………………. 215
5.10.1. Structure of PAN Fibers Thermally Stabilized at 350_C…………………… 218
5.11. Aspects of Carbonization………………………………………………………………………….. 221
5.11.1. Methods of Increasing Fiber Modulus and Effect on Strength………….. 225
5.11.1.1. Hot stretching …………………………………………………………….. 225
5.11.1.2. Effects of neutron irradiation ……………………………………….. 228
5.11.1.3. Annealing in the presence of boron……………………………….. 229
5.11.2. Carbon Fiber Yield ……………………………………………………………………… 230
5.12. Relation of Carbon Fiber Tensile Properties to Process Conditions ………………. 230
5.13. Developments………………………………………………………………………………………….. 232
5.13.1. Improvements in Carbon Fiber Properties ……………………………………… 232
5.13.2. Alternative Polymer Formulations…………………………………………………. 232
5.13.3. A Family of Controlled Resistance Carbon Fibers ………………………….. 233
5.14. A Review of the Stabilization of PAN Precursors ……………………………………….. 234
5.14.1. Stabilization Schemes of PAN and Associated Observations…………….. 235
5.15. Mechanisms for the Carbonization Stages of PAN Carbon Fibers ………………… 254
References ………………………………………………………………………………………………………… 259
Chapter 6 Carbon Fiber Production using a Cellulosic based Precursor…………………. 269
6.1. Introduction ……………………………………………………………………………………………… 269
6.2. Current Production……………………………………………………………………………………. 272
6.2.1. Choice of a Suitable Precursor…………………………………………………………. 272
6.2.2. Pyrolysis………………………………………………………………………………………… 274
6.2.3. Carbonization ………………………………………………………………………………… 279
6.2.4. Hot Stretching during Processing of Carbon Fiber …………………………….. 279
6.2.5. Sizing ……………………………………………………………………………………………. 280
6.3. Mechanisms for the Pyrolysis and Carbonization Stages of
Cellulosic based Precursors…………………………………………………………………………. 280
References ………………………………………………………………………………………………………… 292
Chapter 7 Carbon Fiber Production using a Pitch based Precursor ……………………….. 295
7.1. Introduction ……………………………………………………………………………………………… 295
7.2. Choice of Melt Spun Precursor …………………………………………………………………… 295
7.3. The Manufacturing Process ………………………………………………………………………… 296
7.3.1. Stabilization (thermosetting) of Spun Fiber……………………………………….. 296
7.3.2. Carbonization ………………………………………………………………………………… 301
7.3.3. Graphitization………………………………………………………………………………… 303
7.3.4. Surface Treatment of Pitch based Carbon Fibers……………………………….. 304
7.4. The Structural Ordering and Morphology of Mesophase Pitch Fibers …………….. 305
7.4.1. Mechanisms Associated with the Preparation of Pitch Precursors ………… 309
7.4.2. Mechanisms Associated with the Stabilization
of Pitch Fiber Precursors…………………………………………………………………. 320
7.4.3. Mechanisms Associated with the Carbonization of Pitch Fibers…………… 321
References ………………………………………………………………………………………………………… 322
Chapter 8 Production of Vapor Grown Carbon Fibers (VGCF) ………………………….. 325
8.1. Introduction ……………………………………………………………………………………………… 325
8.2. Preparation of VGCF………………………………………………………………………………… 325
8.3. Growth Process…………………………………………………………………………………………. 334
8.4. Mode of Tensile Failure …………………………………………………………………………….. 339
8.5. Mechanical Properties………………………………………………………………………………… 339
References ………………………………………………………………………………………………………… 343
Chapter 9 Surface Treatment and Sizing of Carbon Fibers …………………………………… 347
9.1. Introduction ……………………………………………………………………………………………… 347
9.2. Oxidative Processes……………………………………………………………………………………. 347
9.2.1. Gas Phase Oxidation ………………………………………………………………………. 348
9.2.2. Liquid Phase Oxidation…………………………………………………………………… 350
9.2.3. Anodic Oxidation …………………………………………………………………………… 352
9.3. Plasma……………………………………………………………………………………………………… 355
9.4. Non-oxidative Surface Treatment—Whiskerization……………………………………….. 356
9.5. Effect of Surface Treatment on Fiber Properties …………………………………………… 357
9.5.1. Introduction…………………………………………………………………………………… 357
9.5.2. The Effects of Surface Treatment …………………………………………………….. 358
9.5.3. Summary……………………………………………………………………………………….. 362
9.6. Coupling Agents ……………………………………………………………………………………….. 363
9.7. Sizing Carbon Fiber…………………………………………………………………………………… 363
9.7.1. Deposition from Solution of a Polymer onto the Fiber Surface …………… 363
9.7.2. Deposition of a Polymer onto the Fiber Surface by
Electrodeposition ……………………………………………………………………………. 367
9.7.3. Deposition of a Polymer onto the Fiber
Surface by Electropolymerization……………………………………………………… 369
References ………………………………………………………………………………………………………… 370
Chapter 10 Guidelines for the Design of Equipment for Carbon Fiber Plant………….. 377
10.1. Introduction ………………………………………………………………………………………….. 377
10.2. Precursor Handling ………………………………………………………………………………… 377
10.3. Drive Systems………………………………………………………………………………………… 379
10.4. Ovens for Oxidation……………………………………………………………………………….. 380
10.5. Removal of Effluent Gases Evolved in the Oxidation Process …………………….. 383
10.6. Application of an Antistatic Finish ………………………………………………………….. 384
10.7. Plaiter Table………………………………………………………………………………………….. 384
10.8. LT Carbonization Furnace ……………………………………………………………………… 384
10.8.1. LT Furnace Gas Seals ……………………………………………………………….. 386
10.8.2. LT Furnace Insulation……………………………………………………………….. 387
10.8.3. Element Materials for LT Furnaces …………………………………………….. 388
10.9. LT Furnace Exhaust Removal ………………………………………………………………… 392
10.10. HT Carbonization Furnace……………………………………………………………………… 395
10.10.1. HT Furnace Gas Seals ……………………………………………………………… 396
10.10.2. HT Furnace Insulation …………………………………………………………….. 396
10.10.3. Element Materials for HT Furnaces…………………………………………… 397
10.11. Typical Calculations for the Design of an HT Furnace………………………………. 398
10.12. Sodium Removal……………………………………………………………………………………. 400
10.13. HM Heat Treatment Furnace………………………………………………………………….. 401
10.13.1. HM Furnace Gas Seals…………………………………………………………….. 401
10.13.2. HM Furnace Insulation ……………………………………………………………. 402
10.13.3. HM Furnace Element Design ……………………………………………………. 402
10.14. Surface Treatment………………………………………………………………………………….. 403
10.15. Sizing ……………………………………………………………………………………………………. 404
10.16. Drying ………………………………………………………………………………………………….. 405
10.17. Online Collection …………………………………………………………………………………… 409
10.18. Offline Winding……………………………………………………………………………………… 411
10.19. Packaging ……………………………………………………………………………………………… 415
10.20. Exhaust Systems…………………………………………………………………………………….. 415
10.21. Dust Extraction……………………………………………………………………………………… 418
10.22. Application of Closed Circuit Television (CCTV)………………………………………. 420
References ………………………………………………………………………………………………………… 420
Chapter 11 Operation of Carbon Fiber Plant and Safety Aspects………………………….. 421
11.1. Introduction ………………………………………………………………………………………….. 421
11.2. Serendipity…………………………………………………………………………………………….. 421
11.3. Maintenance………………………………………………………………………………………….. 423
11.4. Protecting Electrical Equipment ………………………………………………………………. 423
11.5. Air Flow Measurement …………………………………………………………………………… 424
11.5.1. Measurement of Pressure ……………………………………………………………. 424
11.5.2. Determination of Velocity…………………………………………………………… 424
11.5.3. Determination of Volume Flow …………………………………………………… 429
11.6. Collimation and Spreading of Oxidized and Carbonized Fiber ……………………. 433
11.6.1. Lateral Movement ……………………………………………………………………… 433
11.6.2. Lateral Expansion or Contraction ……………………………………………….. 434
11.7. Splicing Small Tows……………………………………………………………………………….. 435
11.8. Drive Systems and Rotating Rollers…………………………………………………………. 436
11.9. Precursor Creel………………………………………………………………………………………. 438
11.10. Oxidation Plant ……………………………………………………………………………………… 439
11.11. Pyrolysis Plant……………………………………………………………………………………….. 440
11.12. Low Temperature Carbonization Furnace ………………………………………………… 440
11.13. High Temperature Carbonization Furnace………………………………………………… 441
11.13.1. Calibration of Pyrometer…………………………………………………………… 441
11.14. High Modulus Furnace…………………………………………………………………………… 442
11.15. Surface Treatment………………………………………………………………………………….. 442
11.16. Sizing ……………………………………………………………………………………………………. 443
11.17. Winding………………………………………………………………………………………………… 443
11.18. Dealing with Emissions…………………………………………………………………………… 444
11.19. Treatment of Cyanide Effluent ………………………………………………………………… 444
11.20. Protecting the Environment …………………………………………………………………….. 446
11.21. Safety Committee …………………………………………………………………………………… 448
11.22. COSH-H Requirements ………………………………………………………………………….. 448
11.23. Toxicology of Carbon Fibers…………………………………………………………………… 449
11.23.1. Definitions of Exposure Limits ………………………………………………….. 449
11.23.2. Data for UK Exposure Limits for Gaseous Emissions………………….. 449
11.23.3. Possible Hazards with Carbon and Graphite Fibers …………………….. 449
11.24. The Risks of Carbon Fiber Composites in a Fire ………………………………………. 450
References ………………………………………………………………………………………………………… 451
Chapter 12 Techniques for Determining the Structure of Carbon Fibers………………… 453
12.1. Introduction ………………………………………………………………………………………….. 453
12.2. Optical Microscope ………………………………………………………………………………… 453
12.3. Scanning Electron Microscope (SEM)………………………………………………………. 456
12.4. Transmission Electron Microscope (TEM)………………………………………………… 460
12.5. X-ray Diffraction …………………………………………………………………………………… 464
12.5.1. Convention for Axes in Graphite and Carbon
Fibers and Dimensional Notation………………………………………………… 464
12.5.2. Wide Angle X-ray Diffraction……………………………………………………… 466
12.5.3. Single Crystal X-ray Diffraction ………………………………………………….. 470
12.5.4. X-ray Powder Diffraction …………………………………………………………… 470
12.5.5. Low Angle X-ray Diffraction………………………………………………………. 473
12.6. Auger Electron Spectroscopy (AES)…………………………………………………………. 473
12.7. X-ray Photoelectron Spectroscopy (XPS or ESCA) ……………………………………. 475
12.8. Ultraviolet Photoemission Spectroscopy (UPS)………………………………………….. 477
12.9. Infrared Spectroscopy …………………………………………………………………………….. 479
12.9.1. Introduction………………………………………………………………………………. 479
12.9.2. Fourier Transform Infrared Spectroscopy (FTIR) …………………………. 481
12.9.3. Fourier Transform Infrared/Attenuated Total
Reflectance Spectroscopy (FTIR/ATR) ………………………………………… 483
12.10. Electron Energy Loss Spectroscopy (EELS)………………………………………………. 483
12.11. Raman Spectroscopy………………………………………………………………………………. 485
12.11.1. Surface Enhanced Raman Scattering (SERS) ………………………………. 485
12.12. Secondary Ion Mass Spectrometry (SIMS) ……………………………………………….. 485
12.12.1. Static SIMS……………………………………………………………………………… 486
12.12.2. Dynamic SIMS ………………………………………………………………………… 489
12.12.3. Imaging or Microscope SIMS ……………………………………………………. 489
12.13. Scanning Tunnelling Microscopy (STM)…………………………………………………… 490
12.14. Atomic Force Microscopy (AFM) or Scanning Force Microscopy (SFM) ……. 493
References ………………………………………………………………………………………………………… 494
Chapter 13 Polymer Matrices for Carbon Fiber Composites…………………………………. 501
13.1. Selected Thermoset Resins………………………………………………………………………… 501
13.1.1. Introduction ……………………………………………………………………………….. 501
13.1.2. Phenolic Resins …………………………………………………………………………… 502
13.1.3. Polyester Resins ………………………………………………………………………….. 503
13.1.4. Epoxy Vinyl Ester Resins …………………………………………………………….. 507
13.1.5. Epoxide Resins……………………………………………………………………………. 508
13.1.5.1. Bisphenol resins ………………………………………………………….. 508
13.1.5.2. Novalac resins…………………………………………………………….. 509
13.1.5.3. Trifunctional resins……………………………………………………… 511
13.1.5.4. Tetrafunctional resins ………………………………………………….. 511
13.1.5.5. Cycloaliphatic resins ……………………………………………………. 512
13.1.5.6. New developments………………………………………………………. 512
13.1.5.7. Epoxy diluents ……………………………………………………………. 513
13.1.5.8. Characterization of epoxy resins …………………………………… 513
13.1.5.9. Curing epoxide resins ………………………………………………….. 513
13.1.5.10. Calculating stoichiometric ratios for epoxy
resins and curing agents ………………………………………………. 519
13.1.6. Cyanate Resins …………………………………………………………………………….. 520
13.1.7. Polyimide Resins…………………………………………………………………………… 521
13.1.7.1. Condensation type polyimides…………………………………………. 523
13.1.7.2. Addition type polyimides………………………………………………… 525
13.1.7.2.1. The earliest bismaleimides…………………………….. 525
13.1.7.2.2. Bismaleimides ……………………………………………… 527
13.1.7.2.3. Acetylene (ethynyl) terminated polyimides ……… 529
13.1.8. Special Resin Systems……………………………………………………………………. 530
13.1.9. Introducing Toughness to Thermoset Resin Systems…………………………. 530
13.1.9.1. Introduction ………………………………………………………………….. 530
13.1.9.2. Toughening versus flexibilizing ………………………………………… 531
13.1.9.3. Types of elastomeric modifiers ………………………………………… 531
13.1.9.4. Duplex materials ……………………………………………………………. 532
13.1.9.5. Thermoplastic modifiers………………………………………………….. 532
13.1.9.6. Effect of carbon fiber reinforcement…………………………………. 533
13.2. Selected Thermoplastic Resins…………………………………………………………………… 533
13.2.1. Introduction ……………………………………………………………………………….. 533
13.2.2. Morphology Property Relationships in Semi-crystalline
Thermoplastics ……………………………………………………………………………. 535
13.2.3. Polyamide (PA) Resins…………………………………………………………………. 538
13.2.4. Polycarbonate (PC) Resin …………………………………………………………….. 540
13.2.5. Polyetheretherketone (PEEK) Resin………………………………………………. 540
13.2.6. Polyetherimide (PEI) Resin…………………………………………………………… 542
13.2.7. Polyethersulfone (PES) Resin………………………………………………………… 542
13.2.8. Polyphenylene Sulfide (PPS) Resin ………………………………………………… 543
13.3. Improving the Bond with Carbon Fiber/Thermoplastics ………………………………. 543
References ………………………………………………………………………………………………………… 544
Chapter 14 Carbon Fiber Carbon Matrix Composites …………………………………………. 551
14.1. Introduction ……………………………………………………………………………………………. 551
14.2. Selection of Materials for Carbon-Carbon Processing………………………………….. 552
14.2.1. Types of Reinforcement……………………………………………………………….. 552
14.2.1.1. Oxidized PAN fiber (opf)………………………………………………. 552
14.2.1.2. PAN based carbon fibers ………………………………………………. 552
14.2.1.3. Pitch based carbon fibers (pbcf) …………………………………….. 554
14.2.1.4. Cellulose based carbon fibers…………………………………………. 555
14.2.2. Type of Matrix……………………………………………………………………………. 555
14.2.2.1. Thermosetting resin………………………………………………………. 556
1. Furan resin …………………………………………………………… 556
2. Phenolic resins ………………………………………………………. 557
3. Polyimide resins …………………………………………………….. 557
14.2.2.2. Thermoplastic matrix precursors ……………………………………. 558
1. Pitch …………………………………………………………………….. 558
2. Other thermoplastic matrices…………………………………… 559
14.3. Methods of Processing Carbon-Carbon Matrix Materials…………………………….. 560
14.3.1. Introduction ……………………………………………………………………………….. 560
14.3.2. Use of Gas Phase Impregnation and Densification………………………….. 560
14.3.2.1. Introduction ………………………………………………………………… 560