Natural Fibers, Plastics and Composites Edited by Frederick T. Wallenberger and Norman E. Weston

By

Natural Fibers, Plastics and Composites
Edited by Frederick T. Wallenberger and Norman E. Weston

Natural Fibers, Plastics and Composites

Contents

Contents
Contributing Authors
SECTION I. OVERVIEW
1 SCIENCE AND TECHNOLOGY
FREDERICK T. WALLENBERGER ANDNORMANE. WESTON
1. MATERIALS FROM NATURAL SOURCES
2. VALUE-IN-USE OF NATURAL MATERIALS
3. OVERVIEW OF NATURAL MATERIALS
3.1 Commercial Technologies
3.2 Commercial Developments
3.3 Recent Research Advances
REFERENCES
SECTION II. NATURAL FIBERS: PROPERTIES AND
APPLICATIONS 9
2 ADVANCED SPIDER SILK FIBERS BY BIOMIMICRY 11
JEFFREYTURNER ANDCOSTASKARA1ZAS
1. INTRODUCTION 11
2. SPIDER SILK AS A BIOMATERIAL 12
3. SPIDER SILK GENETICS 13
4. SILK PROTEIN PRODUCTION IN VITRO 14
5. SILK PROTEIN PRODUCTION VIA LACTATION 16
6. SPIDER SILK PROTEIN CHARACTERIZATION 17
7. SPINNING SILK PROTEINS INTO FIBERS 18
7.1 Fiber Properties and Morphology 20
8. POTENTIAL USES FOR SPIDER SILK FIBERS 22
ACKNOWLEDGEMENT 23
REFERENCES 23
3 ENGINEERING PROPERTIES OF SPIDER SILK FIBERS 27
FRANKK. Ko
1. INTRODUCTION 27
2. TENSILE PROPERTIES 29
3. TRANSVERSE COMPRESSION PROPERTIES 31
4. TORSIONAL PROPERTIES 33
5. VISCOELASTIC PROPERTIES 34
5.1 Elastic Response in Simple Elongation 35
5.2 Hysteresis in Cyclic Loading 36
5.3 Stress Relaxation at Constant Strain 36
5.4 Creep at Constant Load 37
5.5 Low Frequency Sinusoidal Stretching 38
6. A CONSTITUTIVE MODEL FOR SPIDER SILK 38
6.1 The Elastic Response in Simple Elongation 39
6.2 The History Dependent Response 40
6.3 The Continuous Relaxation Spectrum 40
6.4 Computation Methods 41
7. SUMMARY AND OBSERVATIONS 45
ACKNOWLEDGEMENTS 47
REFERENCES 47
4 MICROCRYSTALLINE AVIAN KERATIN PROTEIN FIBERS 51
WALTER F . SCHMIDTAND SHALINI JAYASUNDERA
1. MICROCRYSTALLINE STRUCTURE 51
1.1 Feather Keratin Structure 51
1.2 Wool Chemical Structure 52
1.3 Oriented Molecular Ordering 52
1.4 Evidence for Peptide Secondary Structure 54
2. MORPHOLOGICAL STRUCTURE 56
2.1 Uniformity of Keratin Monomers 57
2.2 Non-Uniformity in Polymeric Forms 59
3. FEATHERS INTO FIBER 60
4. FIBER INTO FIBER COMPOSITES 63
REFERENCES 65
5 KERATIN FIBER NONWOVENS FOR EROSION CONTROL 67
BRIAN R. GEORGE, ALIMOHAMMAD EVAZYNAJAD, ANNE
BOCKARIE, HOLLY MCBRIDE. TETYANA BUNIK AND
ALISON SCUTTI
1. INTRODUCTION 67
2. FIBERS AND NONWOVEN FABRICS 68
2.1 Fiber Characterization 69
2.2 Fabric Production and Characterization 69
2.3 Production and Characterization of Fabric Controls 71
2.4 In-Use Characterization ofNonwoven Fabrics 76
3. EROSION CONTROL 76
3.1 Fabric Selection 77
3.2 Product Installation 79
3.3 Soil Evaluation 80
3.4 Product Evaluation 80
ACKNOWLEDGEMENTS 81
REFERENCES 81
6 KERATIN FillER STRUCTURES FOR NANOFILTRATION 83
M MISRA AND P. KAR
1. INTRODUCTION 83
2. CHARACTERIZATION OF AVIAN FillERS 84
3. REMOVAL OF METAL IONS FROM SOLUTIONS 86
3.1 Removal of Copper 87
3.2 Removal of Lead 88
3.3 Removal of Chromium 89
3.4 Removal of Mercury 90
3.5 Removal of Cadmium 90
3.6 Removal of Metals from Mixed Metal Solution 90
4. REMOVAL OF URANIUM FROM SOLUTIONS 91
5. EFFECT OF FillER SURFACE TREATMENT 91
6. SUMMARY 92
REFERENCES 93
7 ALGINATE AND CHITOSAN FillERS FOR MEDICAL USES 95
HENRYK STRUSZCZYK
1. INTRODUCTION 95
2. EXPERIMENTAL DETAILS 97
3. CHITOSAN AND ALGINATE FillER EVALUATION 99
3.1 Chitosan Fibers 100
3.2 Alginate Fibers 102
4. CONCLUSIONS 103
ACKNOWLEDGMENTS 104
REFERENCES 104
8 NATURAL FillERS WITH LOW MOISTURE SENSITIVITY 105
GERARD T. Port
1. INTRODUCTION 105
2. CHARACTERISTICS OF BAST FillERS 106
3. SWELLING OF BAST FillERS 107
4. METHODS TO REDUCE FillER SWELL 109
4.1 Acetylation 109
4.2 Hydrothenna1 Treatment 110
5. THE DURALIN®PROCESS III
5.1 Decortication 111
5.2 The Feedstock 112
6. DURALIN®PROCESS- MOLECULAR ASPECTS 113
7. Duralin® fibers and duralin® flax shives 116
7.1 Duralin® Fibers 116
7.2 Duralin® Flax Shives 117
8. THERMALDEGRADATION OF FLAX FillERS 118
9. SUMMARYAND CONCLUSIONS 119
REFERENCES 120
9 ENVIRONMENTALLY FRIENDLY LYOCELLFillERS 123
K. CHRISTIAN SCHUSTER, CHRISTIAN ROHRER, DIETER
EICHINGER, JOSEF SCHMIDTBAUER, PETER ALDRED, AND
HEINRICH FIRGO
1. INTRODUCTION 123
1.1 Cellulosic Fibers 126
1.1.1 Tradenames 126
1.1 .2 Structural Properties 126
2. RAWMATERIALS AND PULPING 129
3. VISCOSEAND MODALFillER PROCESS 131
4. LENZINGLYOCELLFillER PROCESS 132
4.1 An IntrinsicallyClean Process 132
4.2 Lyocell Fiber Structure 133
4.3 Fibrillation- Cause and Effects 135
4.4 Lenzing Lyocell Technologyand Products 136
4.5 LenzingLyocell'”LF 136
4.5.1 Fibrillation Protection 137
4.5.2 MechanicalProperties 137
4.5.3 Fiber Morphology 138
4.5.4 The Chemical Stability ofLyocell LF 138
4.5.5 ToxicologicalTests 139
4.5.6 Lyocell LF Blends 139
4.6 Lenzing Lyocell® FILL 140
4.6.1 Bulkiness 140
4.6.2 Elasticity 140
4.6.3 Cigarette Burn Test 141
4.6.4 Washability 142
4.6.5 Comfort- Physiology 142
4.6.6 Lyocell® FILL Blends 143
5. ENVIRONMENTAL AWARDS TO LENZING 143
5.1 Oeko-Tex Standard 100 143
5.2 EU Award for the Environment 144
5.3 European Eco-Labe12002 144
ACKNOWLEDGEMENTS
REFERENCES
SECTION III. NATURAL PLASTICS & MATRIX MATERIALS 147
10 PLASTICS AND COMPOSITES FROMPOLYLACTIC ACID 149
KRISTllNA OKSMANAND JOHAN-FREDRIK SELIN
1. INTRODUCTION 149
2. POLYLACTICACID 150
2.1 Polymerization 151
2.2 Mechanical Properties 151
2.3 Polymer Degradation 152
3. FLAX FIBERS 152
3.1 Generic PropertiesofNatural Fibers 152
3.2 Selected Properties of Flax Fibers 153
4. POLYLACTICACID COMPOSITES 153
4.1 Matrix Materials 154
4.2 Extrusion of Composite and Compression Molding 154
4.3 Mechanicaltesting 154
4.4 Scanning Electron Microscopy 158
4.5 Gel Permeation Chromatography 159
4.6 Dynamic MechanicalThermal Analysis 160
5. APPLICATIONS OF POLYLACTICACID 163
6. SUMMARYANDCONCLUSIONS 163
REFERENCES 164
11 PLASTICSAND COMPOSITES FROMSOYBEAN OIL 167
ZORAN S. PETROVIC, ANDREWGUo, IVAN JAVNI AND WEI
ZHANG
1. INTRODUCTION 167
2. VEGETABLEOIL BASEDRESINS 168
2.1 Compositions 169
2.2 Direct Polymerization of Vegetable Oils 169
2.3 Epoxy Resins From Vegetable Oils 170
2.4 Unsaturated PolyestersFromVegetable Oils 173
2.5 PolyurethanesFrom VegetableOils 176
2.5.1 Polyols FromVegetable Oils 176
2.5.2 Polyurethane Resins FromVegetableOils 178
2.5.3 Distributionof HydroxylGroups, CrosslinkDensity 179
2.5.4 Effect of the Structure ofIsocyanates 182
2.6 Compositesfrom Soy Polyo1s and Reinforcements 186
2.6.1 Materials 186
2.6.2 Fabrication and Propertiesof Composites 186
2.6.3 Effect of Cure Time on Propertiesof Composites 187
2.6.4 Effect of Reinforcement on CompositeProperties 187
2.6.5 Properties of Glass Fiber ReinforcedComposites 188
2.6.6 Hydrolytic Stabilityof Soy Based Composites 189
2.6.7 Properties of CompositesReinforced with E-Glass 189
3. CONCLUSIONS 190
REFERENCES 190
12 PLASTICSAND COMPOSITES FROMLIGNOPHENOLS 193
ELISABETE FROLLlNI, JANEM F. PAIVA, WANDERSON G.
TRINDADE, ILCE A. TANAKA RAZERA AND SANDRA P. TITA
1. INTRODUCTION 193
2. LIGNOCELLULOSIC MATERIALS 194
3. THERMOSETMATRICES 196
3.1 Lignophenolicand Phenolic Resins 197
3.2 Lignophenolicand Phenolic PrepolymerResins 199
3.3 LignophenolicResins in Thermoset Matrices 203
4. LIGNOCELLULOSIC FIBERS IN COMPOSITES 204
5. IMPACTSTRENGTH 206
5.1 Phenolic Matrix Composites 208
5.2 LignophenolicMatrix Composites 210
5.3 Effect of Fiber Treatments 211
6. WATERABSORPTION 213
7. LIGNOPHENOLICS IN CLOSEDCELLFOAMS 218
ACKNOWLEDGEMENTS 219
REFERENCES 219
13 CHITOSAN BIOPOLYMER-SILICA HYBRID AEROGELS 227
WILLIAMM RISEN, JR. AND XIPENG LIU
1. INTRODUCTION 227
2. FORMATION OF BIOPOLYMERS 232
2.1 Generic Approaches 232
2.2 SynthesisofX-Si02 and X-Si02-M Aerogels 233
2.3 Characterization ofX-Si02 and X-Si02-M Aerogels 233
2.3.1 SANSand TEM Size Measurements 234
2.3.2 Magnetic Properties 234
2.3.3 Absorption Spectroscopy 234
2.3.4 Chemical Reactions with X-Si02-M Aerogels 234
2.4 Reactions and Modifications 235
2.4.1 Reaction with SuccinicAnhydride(SA) 235
2.4.2 HMDIand SynthesisofX-Si02-NCO 235
2.4.3 Reaction with IsocyanateTerminatedPrepolymer 235
2.4.4 Modificationwith Isocyanatoethyl Methacrylate 236
2.4.5 Amine Pendant SiloxaneCopolymer 236
2.4.6 Reaction ofX-Si02-NCO with HEMAMonomer 236
2.4.7 Chitosan-SilicaAerogel Hybrid Composite 237
3. STRUCTURES AND PROPERTIES 237
3.1 X-Si02 and X-Si02-M Aerogels 237
3.2 ModificationofX-Si02 Aerogel 240
4. APPLICATIONS 242
ACKNOWLEDGEMENTS 245
REFERENCES 246
SECTION IV. COMPOSITES FROM NATURAL FIBERS AND
PLASTICS 247
14 USES OF NATURAL FIBER REINFORCED PLASTICS 249
RYSZARDKOZLOWSKIANDMARIA WLADYKA-PRZYBYLAK
1. INTRODUCTION 249
2. CONVENTIONAL COMPOSITE BOARDS 250
2.1 Particleboards 252
2.2 Fiberboards 253
3. LIGNOCELLULOSIC-MINERAL COMPOSITES 255
4. NATURAL FIBER REINFORCED POLYMERS 255
4.1 Composites Containing Natural Vegetable Fibers 256
4.2 Limitations ofNatural Fiber Reinforced Composites 256
4.3 Properties of Natural Vegetable Fibers 256
4.4 Fiber Modification 260
4.4.1 Chemical Modification – Mercerization 260
4.4.2 Liquid Ammonia Treatment 260
4.4.3 Conventional Chemical Modification 261
4.4.4 Silane Coupling Agents 262
4.4.5 Treatment With Isocyanates 263
4.4.6 Permanganate Treatment 263
4.4.7 Graft Copolymerization 264
4.4.8 Physical Methods of Modification 266
4.5 Manufacture of Composites 266
4.5.1 Hand Lay-up, Spray and Press Molding 266
4.5.2 Resin Transfer Molding 267
4.5.3 Pultrusion 267
4.5.4 Filament Winding 268
4.5.5 Bulk and Sheet Molding 268
4.6 Nonwovens from Natural Fibers 269
5. FIRE RETARDANT COMPOSITES 269
6. CONCLUSIONS 270
REFERENCES 271
IS NATURAL FIBER REINFORCED AUTOMOTIVE PARTS 275
THOMAS P. SCHLOESSER
I. INTRODUCTION 275
2. PROPERTIES OF NATURAL FIBERS 276
3. COMPARISON OF NATURAL AND GLASS FIBERS 278
4. PROCESSING OF NATURAL FIBER BASED PARTS 279
5. PROPERTIES OF NATURAL FIBER BASED PARTS 280
6. POTENTIAL OF NATURAL FIBER BASED PARTS 281
7. SUMMARY AND CONCLUSIONS 283
8. OUTLOOK 285
REFERENCES 285
16 REGENERATED CELLULOSE REINFORCED PLASTICS 287
S.J. EICHHORN
1. INTRODUCTION 287
2. FillER STRUCTURE AND PROPERTIES 289
3. NATURAL FillER-PLASTIC MATRIX INTERFACES 292
4. REGENERATED CELLULOSE FillERS 296
5. HYBRID GLASSINATURAL FillER COMPOSITES 298
6. BIOMIMETICS IN COMPOSITE PRODUCTION 298
7. CONCLUSIONS 300
ACKNOWLEDGEMENTS 300
REFERENCES 300
17 BAMBOO FillER REINFORCED PLASTICS 305
HIROSHI YAMAGUCHI AND TORU FUJII
1. INTRODUCTION 305
2. PREPARATION OF BAMBOO FillERS 307
3. BAMBOO FillERS – MECHANICAL PROPERTIES 308
4. NATURAL FillER MATRIX COMPoSITE 310
5. RHEOLOGICAL BEHAVIOR OF COMPOSITES 312
6. CONCLUSION 318
ACKNOWLEDGMENT 318
REFERENCES 318
18 RAMIE FillER REINFORCED NATURAL PLASTICS 321
ANILN. NETRAVALI
1. INTRODUCTION 321
2. BIODEGRADABLE FIBERS 322
2.1 Plant Based Fibers 322
2.2 Ramie Fibers 323
3. BIODEGRADABLE POLYMERS 324
3.1 Synthetic and Natural Resins 324
3.2 Soy Based Natural Resins 325
4. BIODEGRADABLE COMPOSITES 327
4.1 Soy Based Natural Resins 327
4.2 Short Fiber Ramie-Soy Composites 327
4.3 Long Fiber Ramie-Soy Composites 333
5. CONCLUSIONS 340
ACKNOWLEDGEMENTS 340
REFERENCES 340
19 NANOPARTICLE REINFORCED NATURAL PLASTICS 345
SABINE FISCHER
1. INTRODUCTION 345
2. NANOPARTICLESIN A POLYMERIC MATRIX 346
2.1 Classical Methodsto Prepare Nanocomposites 348
2.2 Other Methods to Prepare Nanocomposite Materials 350
3. NANOCOMPOSITES WITHNATURALPOLYMERS 351
3.1 Materials and Processes 352
3.2 Nanocomposites for Bioplastic Applications 353
3.2.1 Clay Modification 354
3.2.2 Processing 354
3.2.3 Analysis 355
3.2.4 Manufacturingand Propertiesof Thin Films 355
3.2.5 Conclusions 357
4. BIOMEDICALAPPLICATIONS 358
4.1 Chitosan as a Matrix for BiomedicalApplications 358
4.2 Chitosan-ClayNanocomposites 359
4.3 Nanocomposites Based on Hydroxyapatite 360
5. SUMMARY 362
ACKNOWLEDGEMENTS 363
REFERENCES 363
Index 365

This book is US$10
To get free sample pages OR Buy this book


Share this Book!

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.