Contents
1 Introduction of Electrospinning . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Brief Introduction of Electrospinning . . . . . . . . . . . . . . . . . . . . 1
1.2 History of Electrospinning . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Basic Electrospinning Setups and Related Theories . . . . . . . . . . 3
1.3.1 Basic Electrospinning Setup . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Basic Phenomena in Electrospinning and Their
Corresponding Theories . . . . . . . . . . . . . . . . . . . . . . . . 4
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Effects of Working Parameters on Electrospinning . . . . . . . . . . . . 15
2.1 Solution Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Molecular Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.4 Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.5 Conductivity/Surface Charge Density . . . . . . . . . . . . . . 19
2.2 Processing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Flow Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Collectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Distance (H) Between the Collector and the Tip
of the Syringe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Ambient Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Electrospun Fibers Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Fibers Direction: Modification of Electrospinning Setup . . . . . . 29
3.1.1 Modification of the Distance: Near-Field
Electrospinning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Modification of Collectors . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Fiber Surface Morphology Control . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Pores on Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Parallel Line on Surfaces . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Fiber Structure Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Fiber Structure Control by Co-Electrospinning . . . . . . . . 42
3.3.2 Fiber Structure Control by Single Syringe . . . . . . . . . . . 48
3.4 Three-Dimensional Structures Formed by Electrospun
Nanofibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.1 3D Honeycomb Structures Formed
by Electrospinning Nanofibers . . . . . . . . . . . . . . . . . . . 66
3.4.2 3D Complex Structures Formed by Electrospinning
Nanofibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4 Applications of Electrospun Nanofibers. . . . . . . . . . . . . . . . . . . . . 75
4.1 Nanofiber Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.1 Basic Research on Nanofiber-Reinforced Composites . . . 76
4.1.2 Nanofiber-Reinforced Composites in Biomedical
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.3 Nanofiber-Reinforced Composites in Biodegradable
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.4 How to Improve the Interface Bonding Within
the Electrospun-Reinforced Composites . . . . . . . . . . . . . 80
4.1.5 Future Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.1 Basic Research on Electrospun Nanofibers
in Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Antimicrobial Air Filter . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.3 Future Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Catalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.1 Chemical Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.2 Electrochemical Catalysts . . . . . . . . . . . . . . . . . . . . . . 88
4.3.3 Photocatalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.4 Future Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4 Electronic Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.1 Basic Electronic Research on Electrospun
Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.2 Field-Effect Transistor . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.3 Chemical Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.4 Future Challenge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5 Lithium-Ion Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.1 Electrospun Nanofiber-Based Anodes . . . . . . . . . . . . . . 106
4.5.2 Electrospun Nanofiber-Based Cathodes . . . . . . . . . . . . . 107
4.5.3 Electrospun Nanofiber-Based Separators . . . . . . . . . . . . 110
4.5.4 Future Challenge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.6 Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.6.1 Electrospun Nanofiber-Based Anode Catalyst . . . . . . . . . 113
4.6.2 Electrospun Nanofiber-Based Proton Exchange
Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.6.3 Future Challenge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.7 Biomedical Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.7.1 Drug Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.7.2 Tissue Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.8 Other Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.8.1 Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.8.2 Water Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.8.3 Biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Author Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Preface
One-dimensional (1D) nanostructures (wires, rods, tubes, fibers, and belts) are of current interest for their applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, 1D nanostructures can provide unique advantages for the investigation of the dependence of electrical, thermal, and mechanical performances on dimensionality. To apply the 1D nanostructures into existed macroscopic devices, there is a great need to develop a novel synthesis route for 1D nanostructures with nanoscaled diameter and macroscopic length. Since the 1990s, a novel and simple technique entitled electrospinning, revived by Reneker, has attracted numerous attention for the generation of 1D nanostructures with continuous length, tuneable diameter, aligned direction, diverse and controllable compositions. Till date, the electrospinning field has been evaluated as the Fast
Moving Front in materials science by Thomson, ISI. We therefore publish a mini book to introduce electrospinning. We nevertheless extend our apologies to those scientists whose research findings could not be cited or discussed in our mini book. The present book shall be of interest to those scientists engaged in 1D nanostructures and their applications.
Zhenyu Li
Ce Wang