Contents
Sustainable Textile Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
S. Palamutcu
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 History of Textile Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Sustainable Technology and Textile Manufacturing . . . . . . . . . . . . . . . . 7
4 Sustainable Fiber Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Sustainable Yarn Production Technologies. . . . . . . . . . . . . . . . . . . . . . . 11
6 Sustainable Textile Surface Production Technologies. . . . . . . . . . . . . . . 14
7 Sustainable Wet-Processing Technologies . . . . . . . . . . . . . . . . . . . . . . . 16
8 Sustainable Technologies in Garment Manufacturing . . . . . . . . . . . . . . . 19
9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Sustainable Defence Textiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
V.A. Venkatachalam, V.A. Kaliappan and R. Vijayasekar
1 Overview on the Sustainability/Unsustainability. . . . . . . . . . . . . . . . . . . 23
2 Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 Defence Textile Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1 Sustainable Textile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Military Textile Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Sustainable Procurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1 Sustainable Procurement—What It Means?. . . . . . . . . . . . . . . . . 39
4.2 Sustainable Procurement Factors. . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Sustainability Reporting Initiatives . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Sustainable Public Procurement Codes . . . . . . . . . . . . . . . . . . . . 45
4.5 Sustainability Certifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5 T&C Sustainability in Twenty-First Century . . . . . . . . . . . . . . . . . . . . . 47
5.1 Clean by Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Sustainability Reporting Initiatives . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Standards and Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 ISO Environmental Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Eco-labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6 Sustainability and Quality Function Deployment (QFD). . . . . . . 54
5.7 Operational Research (OR) and Sustainability . . . . . . . . . . . . . . 54
5.8 Cost-Benefit Analysis and Sustainability. . . . . . . . . . . . . . . . . . . 56
5.9 Lean and Sustainability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.10 Developments in T&C Front . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6 Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Enzymatic Washing of Denim: Greener Route for Modern Fashion. . . . 67
Mohammad Shahid, Yuyang Zhou, Ren-Cheng Tang
and Guoqiang Chen
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2 Conventional Washing of Denims and Their Challenges . . . . . . . . . . . . 68
3 Denim Biowashing: Biotechnology for Modern Fashion . . . . . . . . . . . . 69
3.1 Cellulases—Ideal Enzymes for Denim Biowashing . . . . . . . . . . 69
3.2 Challenges and Alternative Solutions . . . . . . . . . . . . . . . . . . . . . 72
4 Sustainability Aspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5 Conclusion and Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
References . . . . . . . . . . . . . . . . . . . . . . . .. 81
Sustainable Textile Technologies
S. Palamutcu
Abstract Conventional textile production technologies have accepted almost the same in principle since the ancient time. Basic techniques of yarn spinning; surface manufacturing techniques of weaving, loop-based knitting, braiding, and felting; dyeing, printing, and sewing techniques; and equipment are not changed in principle.
Principles are quite the same; however, it should be stated that technology improvements, especially production speed increase, are uninterruptedly continued to be able to respond the urge of consumption. Depending on increasing consumer demands, environmental concerns are also erected eventually. In textile production chain, every processing steps have its own environmentally harmful influence on the nature. Every single fiber, every yarn bobbin, each square meter of fabric, each chemical, consumer cycle time of each textile item, and recycle or waste stage of every single T-shirt leave its own footprint behind. Conventionally used natural fiber types of cotton, wool, silk, and linen have their own environmental footprint relevant to their growing–processing steps and consumer using stages. Synthetic-based traditional man-made fiber types have their footprint of raw material and degradation time in nature. New generation of biodegradable man-made fiber production technologies offer promising possibilities from the view of sustainability. Traditional yarn production technologies and processing machinery lines have not been changed in principle since industrial revolution. However, production speed of the machinery and production efficiency has been improving constantly with the cooperation of material science and information technologies. Besides high-speed production on traditional yarn production, new yarn spinning technologies of less machinery requirement and high production speed give promises to improve sustainability approach in yarn production technologies. Weaving, knitting, and nonwoven technologies are the basic textile surface production methods. Weaving process has the biggest environmental footprint, knitting process has the second place, and the environmental footprint of nonwoven production process is the smallest. Influence of wet-processing stages depends on the amount, temperature, and chemical load of the wastewater that is discharged from the production plant. Amount of discharged water depends on the selected process; chemical auxiliary load depends on the type of dyeing and finishing chemistry types; and temperature of the discharged water depends on both selected processing method and energy exchanger installation existence of the plant. Another wastewater and energy-consuming issue of a textile item is confronted during the home laundry period of consumer, where washing, drying, and ironing processes leave big size of footprint. This chapter involves with the latest textile production technologies that improve sustainability feature of a textile product.
Keywords Sustainable _ Environmental footprint _ Textile production _ Laundry _ Consumer _ Biodegradable _ Toxic _ Energy consuming