Contents
Contributors xi
About the editors xv
Introduction xvii
1. Alveolar bone science: Structural characteristics and pathological changes
Sundar Ramalingam, Chalini Sundar, John A. Jansen, Hamdan Alghamdi
1.1 Introduction 1
1.2 Embryology of alveolar bone 2
1.3 Classification of alveolar bone 6
1.4 Alveolar bone proper, alveolar process, and alveolar crest 12
1.5 Composition and micro-structure of alveolar bone 13
1.6 Anatomic considerations of alveolar bone 15
1.7 Alveolar bone in disease and response to injury 16
1.8 Conclusion 20
References 20
2. Dental implants treatment: Clinical indications
Ali Alghamdi, Khalid Al-Motari, Chalini Sundar, John A. Jansen, Hamdan Alghamdi
2.1 Introduction 23
2.2 Edentulism 24
2.3 Dental implants and osseointegration 25
2.4 Clinical considerations for dental implant therapy 27
2.5 Clinical perspectives in implants selection and prosthetic restoration 31
2.5.1 Single-tooth implant restoration 32
2.5.2 Fixed implant restorations—Partial arch bridge 34
2.5.3 Fixed implant restorations—Full arch bridge 35
2.5.4 Implant-supported overdentures 37
2.6 Implant therapy in challenged conditions 38
2.7 Conclusion 40
References 40
3. Alveolar bone grafting: Rationale and clinical applications
Alaa Mansour, Faez Saleh Al-Hamed, Jesus Torres,
Faleh Tamimi Marino
3.1 Bone physiology 43
3.2 Rationale for repairing bone defects 44
3.3 Requirements for alveolar bone-grafting materials 45
3.4 Bone grafts 45
3.4.1 Autogenous bone grafts 45
3.4.2 Allografts 47
3.4.3 Xenograft 50
3.4.4 Alloplastic materials 51
3.5 Clinical applications 55
3.5.1 Alveolar ridge vertical bone loss 55
3.5.2 Narrow alveolar ridge 60
3.5.3 Alveolar cleft 61
3.5.4 Sinus pneumatization 64
3.5.5 Periodontal intra-bony defects 65
3.5.6 Post-extraction alveolar sockets 66
References 71
4. Implant surface modifications and new development
in surface coatings
Vera Hintze, Susanne Bierbaum, Dieter Scharnweber
4.1 Morphological and hydrophilic surface modifications 90
4.1.1 Surface treatment methods and in vitro results 90
4.1.2 Animal experimental results 94
4.2 Modification of physico-chemical surface properties 95
4.3 Inorganic surface modifications including release of metal ions 95
4.3.1 Surface modification methods and in vitro results 95
4.3.2 Animal experimental results 98
4.4 Coatings with ECM proteins and artificial ECM 99
4.4.1 Surface treatment methods and in vitro results 99
4.4.2 Animal experimental results 101
4.5 Coatings with non-collagenous proteins 104
4.5.1 Surface treatment methods and in vitro results 104
4.5.2 Animal experimental results 105
4.6 Coatings with peptides 106
4.6.1 Surface treatment methods and in vitro results 106
4.6.2 Animal experimental results 110
4.7 Coatings with nucleic acids 110
4.7.1 Surface treatment methods and in vitro results 111
4.7.2 Animal experimental results 111
4.8 Conclusions and future directions 111
References 112
5. Synthetic bone graft substitutes: Calcium-based
biomaterials
Anna Diez-Escudero, Montserrat Espanol, Maria-Pau Ginebra
5.1 Calcium phosphates 127
5.1.1 The chemistry of calcium phosphates 127
5.1.2 Calcium phosphate ceramics 130
5.1.3 Calcium phosphate cements and biomimetic
calcium phosphates 135
5.2 Other calcium-based salts 141
5.3 Calcium-containing glasses 141
5.4 Functionalization of synthetic bone grafts 143
5.5 Conclusion 146
References 146
6. Bone graft engineering: Composite scaffolds
Jason L. Guo, Trenton C. Piepergerdes, Antonios G. Mikos
6.1 Requirements of bone tissue engineering 160
6.1.1 Use of scaffolds, cells, and bioactive factors 160
6.1.2 Advantages of composite scaffolds for alveolar
tissue engineering 163
6.2 Composite materials and scaffolds used for bone
graft engineering 163
6.2.1 Synthetic polymers 164
6.2.2 Biological materials 165
6.2.3 Ceramics 166
6.2.4 Scaffold fabrication methods 167
6.3 Composite scaffold design for the reconstruction
of alveolar bone 170
6.3.1 Monophasic scaffolds 171
6.3.2 Biphasic/multiphasic scaffold design 172
6.3.3 Gradient scaffold design 173
6.4 Conclusions and additional considerations 175
Acknowledgments 176
References 176
7. Cellular and molecular reactions to dental implants
Omar Omar, Furqan A. Shah, Krisztina Ruscsák, Shariel Sayardoust,
Anders Palmquist, Peter Thomsen
7.1 Introduction 183
7.2 Biological events of osseointegration 186
7.2.1 Recruitment of macrophages and early inflammation 186
7.2.2 Recruitment and differentiation of mesenchymal
stem cells 188
7.2.3 Early coupling of osteoblastic and osteoclastic
activities at the interface 189
7.3 From molecular activities and interactions to the structural
and functional connection of bone with the implant 190
7.4 Molecular mechanisms of importance for the establishment
of osseointegration 192
7.4.1 Macrophage M1–M2 polarization 192
7.4.2 Runx2, the inducer of osteoblast differentiation 193
7.4.3 The molecular triad RANK/RANKL/OPG 194
7.5 The proposed scenario of osseointegration 195
7.6 Long-term interface maintenance and osteocytes 197
7.7 Bone compromising conditions and the impact on the
molecular events of osseointegration 198
7.7.1 The impact of osteoporosis 198
7.7.2 The impact of diabetes mellitus 199
Acknowledgments 200
References 200
8. Bone regenerative issues related to bone grafting
biomaterials
Alain Hoornaert, Pierre Layrolle
Acknowledgments 214
References 214
9. Cell-based therapies in bone regeneration
Johanna F.A. Husch, Jeroen J.J.P. van den Beucken
9.1 Introduction 217
9.2 Identification of adult stem cells 218
9.2.1 Bone marrow 220
9.2.2 Adipose tissue 220
9.2.3 Dental pulp 222
9.3 Cell preparation 222
9.3.1 Isolation 222
9.3.2 Expansion 223
9.3.3 Seeding 223
9.3.4 Differentiation 223
9.4 Achievements with MSCs in cell-based bone regeneration 224
9.4.1 Preclinical studies 224
9.4.2 Clinical studies 228
9.5 Other cell-based approaches for bone regeneration 234
9.5.1 SVF 234
9.5.2 Angiogenic cells 235
9.6 Limitations 236
9.7 Perspectives 237
References 238
10. Pharmacological interventions targeting bone diseases
in adjunction with bone grafting
Robin A. Nadar, Jeroen J.J.P. van den Beucken,
Sander C.G. Leeuwenburgh
10.1 Introduction 251
10.2 Bone cells and its microenvironment: Possible targets
for bone-targeting agents 254
10.3 Bone-targeting agents 255
10.3.1 Bisphosphonates 256
10.3.2 Other phosphonate-containing targeting molecules 258
10.3.3 Tetracycline 259
10.3.4 Peptides 259
10.3.5 Radiopharmaceuticals 261
10.3.6 Monoclonal antibodies 261
10.4 Bone-targeted drug delivery 263
10.4.1 Bone-targeting agents conjugated to drugs 263
10.4.2 Nanocarriers functionalized with bone-targeting
functionalities 264
10.4.3 Biocompatible bulk scaffolds as locally applicable
drug delivery systems 265
10.5 Applications of bone-targeting drug delivery system 267
10.5.1 Osteoporosis 267
10.5.2 Osteomyelitis 268
10.5.3 Bone cancer: Bone metastasis and osteosarcoma 269
10.6 Conclusion and outlook 270
References 271
11. Assessment methods of bone-to-biomaterials regeneration
Vincent M.J.I. Cuijpers, X. Frank Walboomers, John A. Jansen
11.1 Introduction 281
11.2 X-ray imaging 282
11.2.1 The generation of X-radiation 282
11.2.2 X-ray computed tomography 285
11.3 Micro-computed tomography 285
11.3.1 Tube-based X-ray micro-computed tomography 286
11.3.2 Synchrotron-based X-ray micro-computed tomography 287
11.3.3 Micro-CT analysis of biomaterial scaffolds 288
11.3.4 Micro-CT analysis in bone tissue research 288
11.3.5 Micro-CT analysis in bone tissue engineering 289
11.3.6 Micro-CT and contrast agents 289
11.4 Advances in micro-CT imaging 290
11.4.1 X-ray phase contrast micro-CT 290
11.4.2 X-ray scatter contrast micro-CT 293
11.4.3 X-ray fluorescence contrast 295
11.5 Complementary techniques to X-ray imaging 295
11.5.1 Magnetic resonance imaging in bone research 296
11.5.2 X-ray CT combined with nuclear imaging 297
11.5.3 Advances in hybrid X-ray imaging 299
11.6 Conclusion 300
References 302
12. Frontiers in research for bone biomaterials Sajeesh Kumar Madhurakkat Perikamana, Taufiq Ahmad, Sangmin Lee, Heungsoo Shin
12.1 Introduction 307
12.2 Surface modification of bone biomaterials with biologics 309
12.2.1 Surface modification with growth factors 309
12.2.2 Surface modification with peptides 311
12.2.3 Surface modification with genetic materials 313
12.3 Bone biomaterials mimicking the mineralized bone environment 313
12.3.1 Calcium phosphate coating on bone biomaterials 314
12.3.2 Bio-ceramic scaffolds 316
12.3.3 Biomimetic mineralization on bone biomaterials 318
12.4 Structural modifications of bone biomaterials 319
12.4.1 Effect of surface roughness of bone biomaterials on bone regeneration 320
12.4.2 Bone biomaterials with nanofibrous structures 321
12.4.3 Bone biomaterials with diverse porous structures 322
12.5 Conclusions 323
Acknowledgment 323
References 323
Index 333