Contents
Contributors xv
About the editors xix
1 Structure of biological apatite: bone and tooth 1
Ahmed Talal, Shorouq Khalid Hamid, Maria Khan and
Abdul Samad Khan
1.1 Introduction 1
1.2 Structure of bone 3
1.2.1 Anatomy of bone 4
1.2.2 Composition of bones 4
1.2.3 Properties of bone structure 5
1.3 Structure of tooth 8
1.3.1 Enamel 8
1.3.2 Dentin 9
1.3.3 Pulp 11
1.3.4 Cementum 12
1.3.5 Properties of tooth structure 13
1.4 Conclusion 16
References 16
2 Analytical tools for substituted hydroxyapatite 21
Mariam Raza, Saba Zahid and Anila Asif
Introduction 21
2.1 Structure of hydroxyapatite 21
2.2 Fourier transform infrared spectroscopy 22
2.2.1 Silicon substitution 22
2.2.2 Strontium substitution 23
2.2.3 Magnesium substitution 24
2.2.4 Zinc substitution 24
2.2.5 Fluoride substitution 25
2.2.6 Iron substitution 26
2.2.7 Silver substitution 27
2.2.8 Carbonate substitution 27
2.3 Scanning electron microscopy 27
2.3.1 Silicon substitution 27
2.3.2 Magnesium substitution 28
2.3.3 Zinc substitution 28
2.3.4 Iron substitution 28
2.4 X-ray diffraction analyses 31
2.4.1 Silicon substitution 31
2.4.2 Strontium substitution 32
2.4.3 Magnesium substitution 32
2.4.4 Carbonate substitution 32
2.4.5 Zinc substitution 33
2.4.6 Iron substitution 33
2.4.7 Silver substitution 33
2.4.8 Multielemental incorporation analysis 34
2.5 Differential thermal analysis/thermogravimetric analysis 35
2.5.1 Magnesium substitution 35
2.5.2 Carbonate substitution 35
2.5.3 Multielement substitution 36
2.5.4 Zinc substitution 36
2.5.5 Zr-Ce cosubstitution 36
2.5.6 Silver substitution 37
2.6 Raman spectroscopy 37
2.6.1 Zinc substitution 37
2.6.2 Silver substitution 37
2.6.3 Magnesium substitution 38
2.6.4 Strontium substitution 38
2.6.5 Silicon substitution 38
2.6.6 Fluoride substitution 39
2.6.7 Iron substitution 39
2.7 Nuclear magnetic resonance 39
2.8 In vivo/in vitro analysis 42
2.9 X-ray fluorescence 44
2.10 Conclusion 44
References 44
3 Bioceramics: types and clinical applications 53
Hashmat Gul, Maria Khan and Abdul Samad Khan
3.1 Introduction to bioceramics 53
3.2 Classification of bioceramics 53
3.2.1 Classification on basis of origin 53
3.2.2 Classification on basis of type of tissue response 55
3.2.3 Classification on basis of composition 55
3.2.4 Classification on basis of crystallinity 61
3.3 Biomedical applications of bioceramics 61
3.3.1 Orthopedic applications 62
3.3.2 Coatings for chemical bonding 64
3.3.3 Bone tissue engineering 66
3.3.4 Dental applications 67
3.3.5 Ocular prosthesis 71
3.3.6 Otolaryngologic applications 72
References 73
4 Basics of hydroxyapatitedstructure, synthesis, properties, and
clinical applications 85
Hamad Khalid and Aqif Anwar Chaudhry
4.1 Biological apatite and synthetic hydroxyapatite: differences and
similarities 85
4.1.1 Wet-chemical methods 87
4.1.2 Solid-state methods 94
4.1.3 Hydroxyapatite coatings 94
4.2 Properties of hydroxyapatite 97
4.2.1 Structural insights 97
4.2.2 Physical and thermal properties 98
4.2.3 Mechanical properties 98
4.2.4 Biological performance 98
4.2.5 Applications of hydroxyapatite 101
References 107
5 Role of substitution in bioceramics 117
Sobia Tabassum
5.1 Introduction 117
5.2 Bioapatites 117
5.3 Synthetic hydroxyapatite 118
5.4 Effect of substitution on charge and size of hydroxyapatite crystals 119
5.5 Types of metallic substituents 121
5.5.1 Monovalent cationic substituents 121
5.5.2 Bivalent cationic substituents 123
5.5.3 Trivalent cationic substituents 127
5.6 Nonmetallic substitutions 129
5.6.1 Fluoride substitution 130
5.6.2 Chloride substitution 130
5.6.3 Carbonate substitution 130
5.6.4 Silicon substitution 131
5.6.5 Boron substitution 131
5.6.6 Sulfate substitution 132
5.6.7 Selenium substitution 132
5.6.8 Tellurium substitution 133
5.7 Significance of multiple substitutions 133
5.8 Grafting of organic compounds/polymers on the surface of
hydroxyapatite 133
5.9 Conclusion and outlook 134
References 135
6 Carbonate substituted hydroxyapatite 149
Saadat Anwar Siddiqi and Usaid Azhar
6.1 Introduction 149
6.1.1 Hydroxyapatite 150
6.1.2 Substitution of hydroxyapatite 152
6.2 Carbonate substituted hydroxyapatite 152
6.2.1 A-type carbonated hydroxyapatite 153
6.2.2 B-type carbonated hydroxyapatite 154
6.2.3 Type-AB carbonated hydroxyapatite 156
6.3 Methods of synthesis 157
6.3.1 Precipitation technique 157
6.3.2 Hydrothermal technique 158
6.4 Characterization techniques 159
6.4.1 X-ray diffraction 159
6.4.2 Fourier-transform infrared spectroscopy 160
6.5 Carbonated hydroxyapatite as a coating material 162
6.6 Carbonated hydroxyapatiteebased composite materials 164
6.7 Biological studies 165
6.8 Conclusion 166
References 167
7 Fluoride-substituted hydroxyapatite 175
Sandleen Feroz and Abdul Samad Khan
7.1 Structure of hydroxyapatite 175
7.2 Presence of ions in biological apatite 176
7.3 Ionic substitution of hydroxyapatite 177
7.4 Fluoride substitution in hydroxyapatite 178
7.4.1 Method of preparation of fluoride-substituted hydroxyapatite 179
7.4.2 Structure of fluoride-substituted hydroxyapatite 182
7.4.3 Biomedical applications of fluoride-substituted hydroxyapatite 187
7.5 Concluding remarks 189
References 190
Further reading 196
8 Magnesium-substituted hydroxyapatite 197
Ume Omema, Hamad Khalid and Aqif Anwar Chaudhry
8.1 Biological importance of the magnesium ion and its relevance
to calcium phosphates 197
8.2 Synthesis of magnesium-substituted hydroxyapatite 198
8.2.1 Coprecipitation method 198
8.2.2 Solegel method 199
8.2.3 Batch and flow hydrothermal synthesis 199
8.2.4 Solid-state methods 200
8.3 Magnesium-substituted hydroxyapatite coatings 201
8.4 Characterization of magnesium-substituted hydroxyapatite 203
8.4.1 Electron microscopy 203
8.4.2 Surface area 205
8.4.3 X-ray diffraction 206
8.4.4 Fourier-transform infrared spectroscopy 206
8.4.5 Raman spectroscopy 208
8.4.6 Thermogravimetric analysis 209
8.5 Assessing biological response to magnesium-substituted
hydroxyapatite 210
8.5.1 In vitro analysis 211
8.5.2 In vivo analysis (animal model) 212
References 213
9 Zinc-substituted hydroxyapatite 217
Kashif Ijaz, Hamad Khalid and Aqif Anwar Chaudhry
9.1 The biological importance of zinc ion and its relevance to
calcium phosphates 217
9.2 Synthesis of zinc-substituted hydroxyapatite 218
9.2.1 Solegel methodology 218
9.2.2 Coprecipitation method 219
9.2.3 Hydrothermal synthesis 220
9.2.4 Solid-state methods 220
9.3 Zinc-substituted hydroxyapatite coatings 220
9.4 Characterization of zinc-substituted hydroxyapatite 221
9.4.1 Electron microscopy 221
9.4.2 Surface area analysis 224
9.4.3 X-ray diffraction 225
9.4.4 Fourier-transform infrared spectroscopy 226
9.4.5 Raman spectroscopy 227
9.4.6 Thermogravimetric analysis 228
9.5 Biological performance of zinc-substituted hydroxyapatite 228
9.5.1 Cell response 228
9.5.2 Antibacterial response 229
9.5.3 Animal model 230
References 233
10 Silver-substituted hydroxyapatite 237
Zohaib Khurshid, Muhammad Sohail Zafar, Shehriar Hussain,
Amber Fareed, Safiyya Yousaf and Farshid Sefat
10.1 Introduction 237
10.2 The rationale of silver in apatite 237
10.3 Substitution in hydroxyapatite 239
10.4 Methods of Preparations 241
10.4.1 Wet precipitation 242
10.4.2 Coprecipitation 242
10.4.3 Hydrothermal 242
10.4.4 Solegel 243
10.4.5 Microwave 243
10.4.6 Other methods 244
10.5 Use of surfactants during preparation 244
10.6 Structure of silver-substituted hydroxyapatite 245
10.7 Effect on bioactivity of hydroxyapatite 245
10.8 Use of micro- and/or nanosilver particles in hydroxyapatite
for implant coatings 246
10.9 Antibacterial effect of silver-substituted hydroxyapatite 247
10.10 Drug-loaded silver-substituted hydroxyapatite 248
10.11 Other biomedical applications 248
10.12 Dental applications 249
10.13 Conclusion 249
References 250
11 Iron-substituted hydroxyapatite 259
Christie Lung Ying Kei
11.1 Introduction 259
11.2 Biological importance of iron 260
11.3 Synthesis methods 261
11.3.1 Wet-state methods 261
11.3.2 Solid-state methods 267
11.4 Lattice structure of iron-substituted hydroxyapatite 268
11.5 Physical properties of iron-substituted hydroxyapatite 268
11.5.1 Magnetization 269
11.5.2 Mechanical properties 269
11.6 Biological properties of iron-substituted hydroxyapatite 270
11.6.1 In vitro bioactivity 270
11.6.2 Biocompatibility 270
11.7 Biomedical applications 273
11.7.1 Drug delivery 274
11.7.2 Biosensor 274
11.7.3 Protein and gene delivery 275
11.7.4 Magnetic resonance imaging 275
11.7.5 Scaffolds 276
11.7.6 Hyperthermia therapy 277
11.8 Conclusions 279
References 279
12 Silicon-substituted hydroxyapatite 283
Aysha Arshad and Ather Farooq Khan
12.1 Introduction 283
12.2 Biological importance of silicon 284
12.3 Silicon-substituted hydroxyapatite synthesis methods 285
12.3.1 Precipitation method 285
12.3.2 Solegel method 288
12.3.3 Hydrothermal method 288
12.3.4 Solid-state reaction 288
12.4 Characterization of silicon-substituted hydroxyapatite 289
12.4.1 X-ray diffraction 291
12.4.2 Fourier-transform infrared spectroscopy 292
12.4.3 Other characterization studies 292
12.5 Silicon-substituted hydroxyapatite in coatings 293
12.6 Silicon-substituted hydroxyapatite in biomedical applications 295
12.6.1 In vitro studies 296
12.6.2 In vivo studies 297
References 299
13 Effects of strontium substitution in synthetic apatites for biomedical
applications 307
Nujood Ibrahim Alyousef, Yara Khalid Almaimouni,
Mashael Abdullah Benrahed, Abdul Samad Khan and Saroash Shahid
13.1 Introduction 307
13.2 Method of preparation of strontium-substituted hydroxyapatite 307
13.2.1 Hydrothermal method 308
13.2.2 Solegel method 309
13.2.3 Coprecipitation method 310
13.2.4 Wet chemical synthesis 311
13.3 Structure of strontium-substituted hydroxyapatite 312
13.3.1 Crystallographic analysis of strontium-substituted apatite 312
13.3.2 Structural analysis of strontium-substituted apatite 313
13.4 Biomedical applications of strontium-substituted hydroxyapatite 316
13.4.1 Orthopedic and bone tissue regeneration 316
13.4.2 Implant coating 318
13.4.3 Osteoporosis treatment 319
13.4.4 Enamel repair 320
13.4.5 Guided bone regeneration 320
13.4.6 Drug carrier 321
References 322
14 Coating of hydroxyapatite and substituted apatite on dental
and orthopedic implants 327
Farasat Iqbal and Hira Fatima
14.1 Introduction 327
14.2 Hydroxyapatite coatings for dental and orthopedic implants 330
14.3 Processing of hydroxyapatite and substituted apatite coatings 332
14.4 Techniques for hydroxyapatite-based coating onto metallic implant 336
14.4.1 Solegel dip-coating technique 336
14.4.2 Electrochemical deposition 337
14.4.3 Plasma spraying technique 338
14.4.4 High-velocity suspension plasma spraying 338
14.4.5 Biomimetic coatings 339
14.5 Host tissue interaction with hydroxyapatite coatings 340
14.6 Current challenges and future opportunities 342
References 344
15 Three-dimensional printing of hydroxyapatite 355
Asma Tufail, Franziska Schmidt and Muhammad Maqbool
15.1 Overview of additive manufacturing 355
15.1.1 The historical development and need for additive manufacturing 355
15.1.2 Biomedical applications of additive manufacturing 357
15.2 General introduction of different additive manufacturing techniques 357
15.2.1 Vat photopolymerization 357
15.2.2 Material jetting 358
15.2.3 Binder jetting 359
15.2.4 Material extrusion 360
15.2.5 Powder bed fusion 360
15.2.6 Sheet lamination 361
15.2.7 Directed energy deposition 362
15.3 Additive manufacturing of ceramics and ceramic composites 362
15.3.1 Powder-based ceramic additive manufacturing 363
15.3.2 Slurry-based ceramic additive manufacturing 366
15.3.3 Solid-based ceramic additive manufacturing 368
15.4 Additive manufacturing of hydroxyapatite and composites 369
15.4.1 Introduction and biological applications of three-dimensional hydroxyapatite for biomedical applications 369
15.4.2 Synthesis of three-dimensional hydroxyapatite by different additive manufacturing techniques 370
15.5 Concluding remarks and the future of additive manufacturing of hydroxyapatite 375
References 376
16 Hydroxyapatite and tissue engineering 383 Saeed Ur Rahman
16.1 Origin and history of hydroxyapatite 383
16.2 Tissue engineering 383
16.3 Main components of tissue engineering 384
16.3.1 Cells 385
16.3.2 Growth factors 385
16.3.3 Scaffolds acting as extracellular matrix 386
16.4 Scaffold materials 386
16.5 Hydroxyapatite as tissue scaffolding material 387
16.5.1 Hydroxyapatite in combination with natural materials 387
16.5.2 Hydroxyapatite in combination with synthetic materials 389
16.6 Role of hydroxyapatite in tissue engineering 390
16.6.1 Bone 390
16.6.2 Periodontal tissue regeneration 393
16.6.3 Temporomandibular joint 393
16.6.4 Cartilage 394
16.6.5 Dentin 394
16.6.6 Cementum 395
16.7 Future horizons 396
References 396
Index 401