CONTENTS
Preface xv
1 Models of Polymer Chains 1
1.1 Introduction 1
1.1.1 Chain Architecture 1
1.1.2 Models of a Linear Polymer Chain 2
1.1.2.1 Models in a Continuous Space 2
1.1.2.2 Models in a Discrete Space 4
1.1.3 Real Chains and Ideal Chains 5
1.2 Ideal Chains 7
1.2.1 Random Walk in One Dimension 7
1.2.1.1 Random Walk 7
1.2.1.2 Mean Square Displacement 9
1.2.1.3 Step Motion 10
1.2.1.4 Normal Distribution 10
1.2.2 Random Walks in Two and Three Dimensions 12
1.2.2.1 Square Lattice 12
1.2.2.2 Lattice in Three Dimensions 13
1.2.2.3 Continuous Space 14
1.2.3 Dimensions of Random-Walk Chains 15
1.2.3.1 End-to-End Distance and Radius of Gyration 15
1.2.3.2 Dimensions of Ideal Chains 18
1.2.3.2 Dimensions of Chains with Short-Range Interactions 19
1.2.4 Problems 20
1.3 Gaussian Chain 23
1.3.1 What is a Gaussian Chain? 23
1.3.1.1 Gaussian Distribution 23
1.3.1.2 Contour Length 25
1.3.2 Dimension of a Gaussian Chain 25
1.3.2.1 Isotropic Dimension 25
1.3.2.2 Anisotropy 26
1.3.3 Entropy Elasticity 28
1.3.3.1 Boltzmann Factor 28
1.3.3.2 Elasticity 30
1.3.4 Problems 31
1.4 Real Chains 33
1.4.1 Excluded Volume 33
1.4.1.1 Excluded Volume of a Sphere 3 3
1.4.1.2 Excluded Volume in a Chain Molecule 34
1.4.2 Dimension of a Real Chain 36
1.4.2.1 Flory Exponent 36
1.4.2.2 Experimental Results 37
1.4.3 Self-Avoiding Walk 39
1.4.4 Problems 40
1.5 Semirigid Chains 41
1.5.1 Examples of Semirigid Chains 41
1.5.2 Wormlike Chain 43
1.5.2.1 Model 43
1.5.2.2 End-to-End Distance 44
1.5.2.3 Radius of Gyration 45
1.5.2.4 Estimation of Persistence Length 46
1.5.3 Problems 47
1.6 Branched Chains 49
1.6.1 Architecture of Branched Chains 49
1.6.2 Dimension of Branched Chains 50
1.6.3 Problems 52
1.7 Molecular Weight Distribution 55
1.7.1 Average Molecular Weights 55
1.7.1.1 Definitions of the Average Molecular Weights 55
1.7.1.2 Estimation of the Averages and the Distribution 57
1.7.2 Typical Distributions 58
1.7.2.1 Poisson Distribution 58
1.7.2.2 Exponential Distribution 59
1.7.2.3 Log-Normal Distribution 60
1.7.3 Problems 62
1.8 Concentration Regimes 63
1.8.1 Concentration Regimes for Linear Flexible Polymers 63
1.8.2 Concentration Regimes for Rodlike Molecules 65
1.8.3 Problems 66
2 Thermodynamics of Dilute Polymer Solutions 69
2.1 Polymer Solutions and Thermodynamics 69
2.2 Flory-Huggins Mean-Field Theory 70
2.2.1 Model 70
2.2.1.1 Lattice Chain Model 70
2.2.1.2 Entropy of Mixing 72
2.2.1.3 x Parameter 72
2.2.1.4 Interaction Change Upon Mixing 74
2.2.2 Free Energy, Chemical Potentials, and
Osmotic Pressure 75
2.2.2.1 General Formulas 75
2.2.2.2 Chemical Potential of a Polymer Chain in Solution 77
2.2.3 Dilute Solutions 77
2.2.3.1 Mean-Field Theory 77
2.2.3.2 Virial Expansion 78
2.2.4 Coexistence Curve and Stability 80
2.2.4.1 Replacement Chemical Potential 80
2.2.4.2 Critical Point and Spinodal Line 81
2.2.4.3 Phase Separation 82
2.2.4.4 Phase Diagram 84
2.2.5 Polydisperse Polymer 87
2.2.6 Problems 89
2.3 Phase Diagram and Theta Solutions 99
2.3.1 Phase Diagram 99
2.3.1.1 Upper and Lower Critical Solution Temperatures 99
2.3.1.2 Experimental Methods 100
2.3.2 Theta Solutions 101
2.3.2.1 Theta Temperature 101
2.3.2.2 Properties of Theta Solutions 103
2.3.3 Coil-Globule Transition 105
2.3.4 Solubility Parameter 107
2.3.5 Problems 108
2.4 Static Light Scattering 108
2.4.1 Sample Geometry in Light-Scattering
Measurements 108
2.4.2 Scattering by a Small Particle 110
2.4.3 Scattering by a Polymer Chain 112
2.4.4 Scattering by Many Polymer Chains 115
2.4.5 Correlation Function and Structure Factor 117
2.4.5.1 Correlation Function 117
2.4.5.2 Relationship Between the Correlation
Function and Structure Factor 117
2.4.5.3 Examples in One Dimension 119
2.4.6 Structure Factor of a Polymer Chain 120
2.4.6.1 Low-Angle Scattering 120
2.4.6.2 Scattering by a Gaussian Chain 121
2.4.6.3 Scattering by a Real Chain 124
2.4.6.4 Form Factors 125
2.4.7 Light Scattering of a Polymer Solution 128
2.4.7.1 Scattering in a Solvent 128
2.4.7.2 Scattering by a Polymer Solution 129
2.4.7.3 Concentration Fluctuations 131
2.4.7.4 Light-Scattering Experiments 132
2.4.7.5 ZimmPlot 133
2.4.7.6 Measurement of dn/dc 135
2.4.8 Other Scattering Techniques 136
2.4.8.1 Small-Angle Neutron Scattering (SANS) 136
2.4.8.2 Small-Angle X-Ray Scattering (SAXS) 139
2.4.9 Problems 139
2.5 Size Exclusion Chromatography and Confinement 148
2.5.1 Separation System 148
2.5.2 Plate Theory 150
2.5.3 Partitioning of Polymer with a Pore 151
2.5.3.1 Partition Coefficient 151
2.5.3.2 Confinement of a Gaussian Chain 153
2.5.3.3 Confinement of a Real Chain 156
2.5.4 Calibration of SEC 158
2.5.5 SEC With an On-Line Light-Scattering Detector 160
2.5.6 Problems 162
APPENDIXES
2. A: Review of Thermodynamics for
Colligative Properties in Nonideal Solutions 164
2.A.1 Osmotic Pressure 164
2.A.2 Vapor Pressure Osmometry 164
2.B: Another Approach to Thermodynamics of
Polymer Solutions 165
2.C: Correlation Function of a Gaussian Chain 166
3 Dynamics of Dilute Polymer Solutions 167
3.1 Dynamics of Polymer Solutions 167
3.2 Dynamic Light Scattering and Diffusion of Polymers 168
3.2.1 Measurement System and Autocorrelation Function 168
3.2.1.1 Measurement System 168
3.2.1.2 Autocorrelation Function 169
3.2.1.3 Photon Counting 170
3.2.2 Autocorrelation Function 170
3.2.2.1 Baseline Subtraction and Normalization 170
3.2.2.2 Electric-Field Autocorrelation Function 172
3.2.3 Dynamic Structure Factor of Suspended Particles 172
3.2.3.1 Autocorrelation of Scattered Field 172
3.2.3.2 Dynamic Structure Factor 174
3.2.3.3 Transition Probability 174
3.2.4 Diffusion of Particles 176
3.2.4.1 Brownian Motion 176
3.2.4.2 Diffusion Coefficient 177
3.2.4.3 Gaussian Transition Probability 178
3.2.4.4 Diffusion Equation 179
3.2.4.5 Concentration 179
3.2.4.6 Long-Time Diffusion Coefficient 180
3.2.5 Diffusion and DLS 180
3.2.5.1 Dynamic Structure Factor and Mean
Square Displacement 180
3.2.5.2 Dynamic Structure Factor of a Diffusing
Particle 181
3.2.6 Dynamic Structure Factor of a Polymer Solution 182
3.2.6.1 Dynamic Structure Factor 182
3.2.6.2 Long-Time Behavior 183
3.2.7 Hydrodynamic Radius 184
3.2.7.1 Stokes-Einstein Equation 184
3.2.7.2 Hydrodynamic Radius of a Polymer Chain 185
3.2.8 Particle Sizing 188
3.2.8.1 Distribution of Particle Size 188
3.2.8.2 Inverse-Laplace Transform 188
3.2.8.3 Cumulant Expansion 189
3.2.8.4 Example 190
3.2.9 Diffusion From Equation of Motion 191
3.2.10 Diffusion as Kinetics 193
3.2.10.1 Pick’s Law 193
3.2.10.2 Diffusion Equation 195
3.2.10.3 Chemical Potential Gradient 196
3.2.11 Concentration Effect on Diffusion 196
3.2.11.1 Self-Diffusion and Mutual Diffusion 196
3.2.11.2 Measurement of Self-Diffusion Coefficient
3.2.11.3 Concentration Dependence of the
Diffusion Coefficients 198
3.2.12 Diffusion in a Nonuniform System 200
3.2.13 Problems 201
3.3 Viscosity 209
3.3.1 Viscosity of Solutions 209
3.3.1.1 Viscosity of a Fluid 209
3.3.1.2 Viscosity of a Solution 211
3.3.2 Measurement of Viscosity 213
3.3.3 Intrinsic Viscosity 215
3.3.4 Flow Field 217
3.3.5 Problems 219
3.4 Normal Modes 221
3.4.1 Rouse Model 221
3.4.1.1 Model for Chain Dynamics 221
3.4.1.2 Equation of Motion 222
3.4.2 Normal Coordinates 223
3.4.2.1 Definition 223
3.4.2.2 Inverse Transformation 226
3.4.3 Equation of Motion for the Normal
Coordinates in the Rouse Model 226
3.4.3.1 Equation of Motion 226
3.4.3.2 Correlation of Random Force 228
3.4.3.3 Formal Solution 229
3.4.4 Results of the Normal-Coordinates 229
3.4.4.1 Correlation of q,(0 229
3.4.4.2 End-to-End Vector 230
3.4.4.3 Center-of-Mass Motion 231
3.4.4.4 Evolution of q,(0 231
3.4.5 Results for the Rouse Model 232
3.4.5.1 Correlation of the Normal Modes 232
3.4.5.2 Correlation of the End-to-End Vector 234
3.4.5.3 Diffusion Coefficient 234
3.4.5.4 Molecular Weight Dependence 234
3.4.6 Zimm Model 234
3.4.6.1 Hydrodynamic Interactions 234
3.4.6.2 Zimm Model in the Theta Solvent 236
3.4.6.3 Hydrodynamic Radius 238
3.4.6.4 Zimm Model in the Good Solvent 238
3.4.7 Intrinsic Viscosity 239
3.4.7.1 Extra Stress by Polymers 239
3.4.7.2 Intrinsic Viscosity of Polymers 241
3.4.7.3 Universal Calibration Curve in SEC 243
3.4.8 Dynamic Structure Factor 243
3.4.8.1 General Formula 243
3.4.8.2 Initial Slope in the Rouse Model 247
3.4.8.3 Initial Slope in the Zimm Model, Theta Solvent 247
3.4.8.4 Initial Slope in the Zimm Model, Good Solvent 248
3.4.8.5 Initial Slope: Experiments 249
3.4.9 Motion of Monomers 250
3.4.9.1 General Formula 250
3.4.9.2 Mean Square Displacement:
Short-Time Behavior Between a
Pair of Monomers 251
3.4.9.3 Mean Square Displacement of Monomers 252
3.4.10 Problems 257
3.5 Dynamics of Rodlike Molecules 262
3.5.1 Diffusion Coefficients 262
3.5.2 Rotational Diffusion 263
3.5.2.1 Pure Rotational Diffusion 263
3.5.2.2 Translation-Rotational Diffusion 266
3.5.3 Dynamic Structure Factor 266
3.5.4 Intrinsic Viscosity 269
3.5.5 Dynamics of Wormlike Chains 269
3.5.6 Problems 270
APPENDICES
3.A: Evaluation of <q,2)eq 271
3.B: Evaluation of <exp[ik • (Aq – fip)]> 273
3.C: Initial Slope of Si(k,f) 274
4 Thermodynamics and Dynamics of Semidilute Solutions 277
4.1 Semidilute Polymer Solutions 277
4.2 Thermodynamics of Semidilute Polymer Solutions 278
4.2.1 Blob Model 278
4.2.1.1 Blobs in Semidilute Solutions 278
4.2.1.2 Size of the Blob 279
4.2.1.3 Osmotic Pressure 282
4.2.1.4 Chemical Potential 285
4.2.2 Scaling Theory and Semidilute Solutions 286
4.2.2.1 Scaling Theory 286
4.2.2.2 Osmotic Compressibility 289
4.2.2.3 Correlation Length and Monomer
Density Correlation Function 289
4.2.2.4 Chemical Potential 294
4.2.2.5 Chain Contraction 295
4.2.2.6 Theta Condition 296
4.2.3 Partitioning with a Pore 298
4.2.3.1 General Formula 298
4.2.3.2 Partitioning at Low Concentrations 299
4.2.3.3 Partitioning at High Concentrations 300
4.2.4 Problems 301
4.3 Dynamics of Semidilute Solutions 307
4.3.1 Cooperative Diffusion 307
4.3.2 Tube Model and Reptation Theory 310
4.3.2.1 Tube and Primitive Chain 310
4.3.2.2 Tube Renewal 312
4.3.2.3 Disengagement 313
4.3.2.4 Center-of-Mass Motion of the Primitive Chain 315
4.3.2.5 Estimation of the Tube Diameter 318
4.3.2.6 Measurement of the Center-of-Mass Diffusion
Coefficient 319
4.3.2.7 Constraint Release 320
4.3.2.8 Diffusion of Polymer Chains in a Fixed Network 321
4.3.2.9 Motion of the Monomers 322
4.3.3 Problems 324
References 325
Further Readings 326
Appendices 328
Al Delta Function 328
A2 Fourier Transform 329
A3 Integrals 331
A4 Series 332
Index 333