Contents
List of contributors xi
Editors’ biographies xiii
Acknowledgment xv
Part One Introduction 1
1 Introduction to concentrating solar thermal (CST) technologies 3
M.J. Blanco, S. Miller
1.1 The sun as an energy source 3
1.2 Defining characteristics of CST technologies 4
1.3 Thermal efficiency and the need for concentration 5
1.4 Limits of concentration 6
1.5 Optimum operating temperature to maximize light-to-work
conversion efficiency 8
1.6 Main commercially available solar concentrating technologies 9
1.7 Industry and market trends 14
1.8 Research priorities, strategies, and trends 22
References 25
Part Two Advances in the collection and concentration
of sunlight 27
2 Advanced mirror concepts for concentrating solar thermal systems 29
A. Fern_andez-García, F. Sutter, L. Martínez-Arcos,
L. Valenzuela, C. Sansom
Nomenclature 29
2.1 Introduction 30
2.2 Anti-soiling coatings 31
2.3 High-reflective mirror materials 34
2.4 High-temperature mirrors for secondary concentrators 36
2.5 Low-cost mirrors based on stainless steel 40
2.6 Conclusions 40
References 42
3 Improved design for linear Fresnel reflector systems 45
M. Collares-Pereira, D. Canavarro, J. Chaves
3.1 Introduction (motivation) 45
3.2 Advanced linear Fresnel reflector concentrators 48
3.3 Conclusion 54
References 55
Part Three Advances in the thermal conversion of
concentrated sunlight 57
4 A new generation of absorber tubes for concentrating solar
thermal (CST) systems 59
A. Morales, G. San Vicente
4.1 Introduction 59
4.2 Glass cover 60
4.3 Steel tube 63
4.4 Vacuum maintenance 65
4.5 Bellows 68
4.6 Conclusion 70
References 71
5 Innovative working fluids for parabolic trough collectors 75
E. Zarza Moya
5.1 Introduction 75
5.2 Direct steam generation 77
5.3 Molten salts 87
5.4 Compressed gases 94
5.5 Conclusions 101
References 103
6 A new generation of solid particle and other high-performance
receiver designs for concentrating solar thermal (CST)
central tower systems 107
C.K. Ho
6.1 Introduction 107
6.2 Particle receivers 108
6.3 Other high-performance receiver designs 117
6.4 Summary and conclusions 122
Acknowledgments 123
References 123
7 Next generation of liquid metal and other high-performance receiver
designs for concentrating solar thermal (CST) central tower systems 129
M. Romero, J. Gonz_alez-Aguilar
7.1 Introduction 129
7.2 Thermophysical properties of liquid metals 133
7.3 Liquid metals in central receiver systems 139
7.4 Innovative power conversion cycles with liquid metals as heat
transfer fluid 147
7.5 Conclusions and outlook 151
References 152
Part Four Advances in the power block and thermal
storage systems 155
8 Supercritical CO2 and other advanced power cycles
for concentrating solar thermal (CST) systems 157
S.M. Besarati, D.Y. Goswami
8.1 Introduction 157
8.2 Stand-alone cycles 158
8.3 Combined cycles 169
8.4 Summary and conclusions 175
References 176
9 Advances in dry cooling for concentrating solar thermal (CST)
power plants 179
K. Hooman, Z. Guan, H. Gurgenci
9.1 Introduction 179
9.2 Current cooling technologies for concentrating solar thermal
power plants 180
9.3 Air-cooled heat exchanger and cooling tower sizing 184
9.4 Advances in dry cooling technologies for concentrating solar
thermal power plants 191
9.5 Conclusions 211
References 211
10 High-temperature latent heat storage for concentrating
solar thermal (CST) systems 213
K. Nithyanandam, J. Stekli, R. Pitchumani
10.1 General introduction 213
10.2 Introduction to latent heat storage 214
10.3 General challenges for concentrating solar thermal latent heat
storage systems 216
10.4 Latent heat storage configurations for concentrating solar
thermal applications 227
10.5 Summary 242
References 243
11 Thermochemical energy storage for concentrating solar
thermal (CST) systems 247
L. Irwin, J. Stekli, C. Pfefferkorn, R. Pitchumani
11.1 Introduction to thermochemical energy storage 247
11.2 General challenges for CST thermochemical storage systems 252
11.3 Power plant and chemical plant 256
11.4 Le Cha
ˇ
telier’s principle and thermochemical energy storage 260
11.5 Conclusions 265
References 266
12 Thermal energy storage concepts for direct steam generation
(DSG) solar plants 269
L. Valenzuela
Nomenclature 269
12.1 Introduction 270
12.2 Overview on direct steam generation solar plants 270
12.3 Basic considerations on thermal energy storage 272
12.4 Integration of thermal energy storage systems in direct steam
generation solar plants 277
12.5 Conclusions 287
References 287
Part Five Advances in the control an operation
of CPS plants 291
13 Forecasting and nowcasting of DNI for concentrating solar
thermal systems 293
L. Ramírez, J.M. Vindel
13.1 Introduction 293
13.2 Main forecasting techniques 295
13.3 Forecasting systems for CST power plants 304
13.4 Solar radiation forecasting baseline 305
13.5 DNI and CST power plants forecasting: main challenges 305
13.6 Conclusions 306
References 307
14 Advanced control strategies to maximize ROI and the value
of the concentrating solar thermal (CST) plant to the grid 311
E.F. Camacho, A.J. Gallego
14.1 Introduction 311
14.2 Optimal operation in solar trough plants 312
14.3 Optimization of flux distribution in solar tower plants 322
14.4 Conclusions and future works 333
References 334
Part Six Cost competitive CST plants concepts 337
15 Linear Fresnel reflector (LFR) plants using superheated steam,
molten salts, and other heat transfer fluids 339
M. Collares-Pereira, D. Canavarro, L.L. Guerreiro
15.1 Introduction (motivation) 339
15.2 Heat transfer fluids 339
15.3 Higher temperatures: molten salts as HTF and thermal energy
storage medium 342
15.4 Advanced LFR and molten salts: a new concept plant 344
15.5 Yearly performance 344
15.6 Discussion 348
15.7 Conclusions 351
References 351
16 Central tower systems using the Brayton cycle 353
R. Buck, S. Giuliano, R. Uhlig
16.1 Introduction and history 353
16.2 Solarization of gas turbines 357
16.3 Solar gas turbine cycle concepts 360
16.4 System components 365
16.5 System studies 377
16.6 Conclusions 378
Abbreviations 379
References 379
17 Solar power towers using supercritical CO2 and supercritical
steam cycles, and decoupled combined cycles 383
M.A. Silva-Pérez
17.1 Introduction 383
17.2 Solar power towers with supercritical cycles 384
17.3 Decoupled solar combined cycles 393
17.4 Summary and conclusions 399
References 400
18 Solar thermal processing 403
R. Bader, W. Lipi_nski
18.1 Introduction 403
18.2 H2/CO production 405
18.3 Material processing and chemical commodity production 427
18.4 Other thermal processes 442
18.5 Other solar processes 445
18.6 Conclusions and future trends 445
References 447
Index 461