Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Smart Textiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Dynamic Light Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Part I Dynamic Color in Textiles
2 Dynamic Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Color Change Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Thermochromic Textiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Experimental Work: Thermochromic Leuco Dyes . . . . . . . . . . . . . . 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Textile Color Change and Light Transmittance . . . . . . . . . . . . . . . 34
3.3 Color Change: From Different to Similar Colors. . . . . . . . . . . . . . 40
3.4 Color Change: From Similar to Different Colors. . . . . . . . . . . . . . 47
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4 Electrical Activation of Thermo-responsive Textiles . . . . . . . . . . . . . 65
4.1 Electroconductive Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Electroconductive Textiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Experimental Work with Metal-Based Conductive Materials . . . . . 71
4.3.1 Conductive Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Conductive Pigments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Part II Dynamic Form in Textiles
5 Dynamic Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1 Form and Origami Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Shape Memory Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Shape Memory Textiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6 Experimental Work: Shape Memory Alloys . . . . . . . . . . . . . . . . . . . 107
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Textile Morphology and Light Transmittance . . . . . . . . . . . . . . . . 108
6.3 Nitinol Shape Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4 Textile One-Way Shape Memory Behavior . . . . . . . . . . . . . . . . . 114
6.5 Finishing Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.6 Textile Two Shape Behavior: Bias Mechanism . . . . . . . . . . . . . . . 130
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Part III Dynamic Light Filters
7 Design Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.1 Textile Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.1.1 Color Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.1.2 Shape Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.1.3 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.2 Textiles in Interaction with Light Transmittance . . . . . . . . . . . . . . 168
7.2.1 Textiles and Light Transmittance . . . . . . . . . . . . . . . . . . . 168
7.2.2 Color, Shape and Light . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.2.3 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.3 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.3.1 Research Prototype I: IKEA Museum . . . . . . . . . . . . . . . . 176
7.3.2 Research Prototype II: Smart Textiles Salon . . . . . . . . . . . 184
7.3.3 Research Prototype III: Casa da Música . . . . . . . . . . . . . . 194
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Preface
Emergent materials and technologies originated by scientific and technological advances have been providing new means to extend textiles’ conventional qualities. Smart materials are able to sense and react reversibly to an external stimulus and when integrated in textiles, embed them with intrinsic dynamic and interactive behavior.
Smart textiles have been creating great interest for research and development of innovation-driven applications. They enable the development of new and enhanced functionalities, expressions and performances, namely through the potential to interact with our environment, creating relationships between physical and immaterial dimensions.
Design and development of smart textiles encompass competences in diverse domains and entail new perspectives and challenges for design research and practice, given the novelty that reactive and adaptive qualities introduce. This book provides interdisciplinary and articulated coverage on smart textiles topics and discusses original research developed on the integration of smart materials in textile substrates and textile design. The design concept subjacent to the research hinges on the interaction of textiles and light. With natural light, man has a long history of using textiles to change light intensity and tone of sunlight, using for example awnings, curtains, clothing and accessories. With artificial light, we commonly act upon the light source: switching on and off different lamps and using dimmers or other technologies to change lighting parameters.
Focused on our experience working with natural light and textiles, the research discussed in this book aimed to study and develop smart textiles that can change the incident light that passes through them—light transmittance—without acting upon the light source, thus creating Dynamic Light Filters. The research conducted was based on knowledge and experimental practices of textile engineering and design, comprising of two approaches: (a) a materials research focused on integration processes of color change, shape memory and conductive materials in textile substrates; (b) a design research that studied dynamic qualities of textile color and shape behavior in interaction with light.
After an introduction to Smart Textiles and Dynamic Light Filters themes, this book examines fundamental concepts and knowledge in each smart material domain and respective materials research. Part I looks into dynamic color in textiles through Color Change Materials, Thermochromic textiles, their thermo-responsive behavior and respective electrical activation. Part II focuses on dynamic form through Shape Memory Alloys and textile morphological performances based on origami techniques. Part III presents practice-based design research that explores dynamic qualities of color and shape thermo-responsive textiles and their interaction with light. The research program comprises of two main experimental studies on textile behavior and dynamic light, followed by the development and discussion of three research prototypes that proposed to explore expressive possibilities of color, shape and light performances through different intensity levels of change.
This book will be of interest to academicians, researchers and practitioners inspired by smart materials and textile dynamic and interactive behavior. Application fields include engineering, design, architecture and arts. Sections that comprise of experimental work conducted on integration processes of smart materials in textile substrates are also of value to the textile industry. The authors would like to express their gratitude to many people and entities that contributed to the preparation of this book and respective research discussed within it. The research presented in this book was financed by FEDER funds through the Operational Programme for Competitiveness Factors—COMPETE and National Funds through FCT—Foundation for Science and Technology within the scope of the projects SFRH/BD/87196/2012 and Project UID/CTM/00264/2019. Authors acknowledgement goes to 2C2T—Centro de Ciência e Tecnologia Têxtil (Center for Textile Science and Technology), University of Minho. Authors acknowledge Prof. Helder Carvalho and Prof. Joana Cunha for their support during research development, as well as Prof. Fernando Moreira da Siva, Prof. Manuel José dos Santos Silva and Prof. Mário de Araújo for critical discussion of this research.
The authors also express their acknowledgment to Smart Textiles Design Lab (STDL) for the support on the prototypes development and to Prof. Olle Holmud and Magnus Sirhed for the assistance provided during the work developed in Weaving Lab of the Swedish School of Textiles, University of Borås. For providing the opportunity to present the prototypes in a space context, authors gratitude to Ikea Museum, Smart Textiles Salon and Casa da Música (House of Music).
Authors also acknowledge OTOJAL for the development of a research prototype through rotary printing. Thank you to Cristiano Silva for his collaboration during the development of the electronic circuits and programing of the research prototypes and to Manuel Cabral and Agostinho Vieira for the collaboration in video and photographic record of the prototypes II and III. The authors also thank Leontina Di Cecco, Senior Editor, and Springer for the opportunity and support in the preparation of this book. Extended gratitude to colleagues, friends and family that accompanied this journey.