Hydrothermal Behavior of Fiber- and Nanomaterial-Reinforced Polymer Composites PDF by Ramesh Kumar Nayak, Bankim Chandra Ray,Dibyaranjan Rout and Kishore Kumar Mahato

By

Hydrothermal Behavior of Fiber- and Nanomaterial-Reinforced Polymer Composites
By Ramesh Kumar Nayak, Bankim Chandra Ray,Dibyaranjan Rout and Kishore Kumar Mahato
Hydrothermal Behavior of Fiber- and Nanomaterial-Reinforced Polymer Composites


Contents

Preface…………………………………………………………………….ix
Authors……………………………………………………………………xi
1. Introduction……………………………………………………………………1
1.1 Polymer Nanocomposites……………………………………………………………..1
1.2 Classification…………………………………………………………………………………1
1.2.1 Introduction……………………………………………………………………….1
1.2.2 Thermosetting Polymers……………………………………………………2
1.2.3 Thermoplastic Polymers…………………………………………………….2
1.2.4 Polymer-Polymer……………………………………………………………….5
1.2.5 Polymer-Metal……………………………………………………………………6
1.2.6 Polymer-Ceramic……………………………………………………………….7
1.2.7 Polymer-Carbon…………………………………………………………………7
1.2.8 Polymer-Natural Fiber……………………………………………………….9
1.3 Applications………………………………………………………………………………..10
1.3.1 Introduction……………………………………………………………………..10
1.3.2 Aerospace…………………………………………………………………………10
1.3.3 Automotive………………………………………………………………………12
1.3.4 Infrastructures/Civil Structures………………………………………12
1.3.5 Food Packaging………………………………………………………………..14
1.3.6 Energy……………………………………………………………………………..14
1.3.7 Bio-Medical………………………………………………………………………15
References…………………………………………………………………………………………..18
2. Fabrication and Characterization of Nanocomposites………………………21
2.1 Blending of Nanofillers……………………………………………………………….21
2.1.1 Introduction……………………………………………………………………..21
2.1.2 Mechanical Mixing…………………………………………………………..21
2.1.2.1 Ball Milling…………………………………………………………21
2.1.2.2 Three Roll Mixing……………………………………………….23
2.1.3 Ultrasonic Mixing…………………………………………………………….24
2.1.4 Magnetic Stirring……………………………………………………………..24
2.1.5 Combination of Mechanical, Ultrasonic, and Magnetic Stirring…………………………………………………………………………….25
2.1.6 Melt Blending…………………………………………………………………..25
2.1.7 Effect of Fictionalization and Grafting……………………………..26
2.1.8 Solution Mixing……………………………………………………………….27
2.2 Fabrication…………………………………………………………………………………..28
2.2.1 Introduction……………………………………………………………………..28
2.2.2 Hand Lay-up Method………………………………………………………29
2.2.3 Vacuum Resin Transfer Molding………………………………………30
2.2.4 Filament Winding…………………………………………………………….31
2.2.5 Pultrusion………………………………………………………………………..33
2.3 Characterization of Nanocomposites…………………………………………..34
2.3.1 Introduction……………………………………………………………………..34
2.3.2 X-Ray Diffraction……………………………………………………………..34
2.3.3 Electron Microscopy (SEM, TEM)…………………………………….35
2.3.4 Infrared and Raman Spectroscopy…………………………………..38
2.3.5 X-Ray Photoelectron Spectroscopy…………………………………..40
2.3.6 Brunauer-Emmett-Teller…………………………………………………..41
2.4 Mechanical Properties………………………………………………………………..42
2.4.1 Introduction……………………………………………………………………..42
2.4.2 Tensile Test……………………………………………………………………….42
2.4.3 Flexural Test…………………………………………………………………….44
2.4.4 Impact Test……………………………………………………………………….44
2.4.5 Shear and Fatigue Test……………………………………………………..45
2.5 Electrical Properties……………………………………………………………………46
2.6 Thermal Properties……………………………………………………………………..47
2.6.1 Introduction……………………………………………………………………..47
2.6.2 Thermal Gravimetric Analysis…………………………………………48
2.6.3 Differential Scanning Calorimetry…………………………………..49
2.6.4 Thermal Conductivity………………………………………………………50
2.6.5 Flame Retardancy…………………………………………………………….52
2.7 Biodegradability………………………………………………………………………….53
References…………………………………………………………………………………………..54
3. Theory Behind the Improvement of Mechanical Properties through Nanofillers……………………………………………………………………………63
3.1 Introduction………………………………………………………………………………..63
3.2 Organic Nanofillers…………………………………………………………………….65
3.3 Inorganic Nanofillers………………………………………………………………….67
3.3.1 Metal-Based Nanofillers…………………………………………………..67
3.3.2 Metal Oxide-Based Inorganic Nanofillers………………………..68
3.3.3 Gold Nanofillers……………………………………………………………….69
3.3.4 Silver Nanofillers……………………………………………………………..71
3.3.4.1 Synthesis of AgNFs…………………………………………….72
3.3.5 Carbon-Based…………………………………………………………………..72
3.3.6 Fullerenes…………………………………………………………………………72
3.3.7 Graphene………………………………………………………………………….74
3.3.8 Carbon Nanotubes…………………………………………………………..75
3.3.8.1 Single-Walled Carbon Nanotubes……………………….77
3.3.8.2 Multiple-Walled Carbon Nanotubes……………………79
3.3.8.3 Methods of CNTs Synthesis………………………………..79
3.3.9 Carbon Nanofiber…………………………………………………………..80
3.3.10 Carbon Black………………………………………………………………….80
3.3.11 Quantum Dots……………………………………………………………….80
3.3.12 Silica Nanofillers…………………………………………………………….80
References…………………………………………………………………………………………..81
4. Hydrothermal Behavior of Polymer Nanocomposites………………………91
4.1 Diffusion Theory of Moisture Absorption…………………………………..91
4.1.1 Fick’s Model……………………………………………………………………91
4.1.2 Langmuirian Model……………………………………………………….94
4.1.3 Hindered Model…………………………………………………………….95
4.1.4 Dual-Stage Model…………………………………………………………..99
4.2 Factors Affecting Water Absorption………………………………………….100
4.2.1 Nanofiller……………………………………………………………………..100
4.2.2 Polymer………………………………………………………………………..104
4.2.3 Temperature…………………………………………………………………105
4.2.4 Interface………………………………………………………………………..107
4.2.5 Environment…………………………………………………………………110
References…………………………………………………………………………………………111
5. Hydrothermal Effect on Mechanical Properties of Organic Nanofillers Embedded FRP Composites………………………………………….113
5.1 Introduction………………………………………………………………………………113
5.2 Graphene…………………………………………………………………………………..114
5.3 Graphite…………………………………………………………………………………….120
5.4 Single-Walled Carbon Nanotubes……………………………………………..124
5.5 Multi-Walled Carbon Nanotubes………………………………………………125
5.6 Synergistic Effect of Nanofillers………………………………………………..132
References…………………………………………………………………………………………133
6. Hydrothermal Effect on Mechanical Properties of Inorganic Nanofillers Embedded FRP Composites………………………………………….141
6.1 Introduction………………………………………………………………………………141
6.2 SiO2……………………………………………………………………………………………143
6.3 Al2O3…………………………………………………………………………………………147
6.4 TiO2…………………………………………………………………………………………..153
6.5 SiC…………………………………………………………………………………………….158
6.6 CaCO3……………………………………………………………………………………….160
6.7 BN……………………………………………………………………………………………..162
6.8 Synergistic Effect of Nanofillers………………………………………………..163
References…………………………………………………………………………………………164
7. Hydrothermal Effect on Mechanical Properties of Nanofillers Embedded Natural Fiber Reinforced Polymer Composites…………….169
7.1 Introduction………………………………………………………………………………169
7.2 Natural Fiber Reinforced Composites……………………………………….169
7.3 Hydrothermal Effect…………………………………………………………………173
7.3.1 Mechanical Properties……………………………………………………180
7.3.1.1 Tensile Strength………………………………………………..180
7.3.1.2 Flexural Strength………………………………………………181
7.3.2 Thermal Properties…………………………………………………………183
7.3.3 Wear Resistance……………………………………………………………..185
References…………………………………………………………………………………………188
8. Hydrothermal Effect on the Mechanical Properties of Multiple Nanofillers Embedded Hybrid FRP Composites…………………………….195
8.1 Introduction………………………………………………………………………………195
8.2 Organic-Organic Nanofillers…………………………………………………….196
8.3 Organic-Inorganic Nanofillers…………………………………………………..198
8.4 Inorganic-Inorganic Nanofillers………………………………………………..201
References…………………………………………………………………………………………203
9. Future Prospective and Challenges…………………………………………………207
Index……………………………………………………………………………………………………….221

Preface
The trending technology in materials science is based on the development of a new class of materials for different engineering applications. Fiber reinforced polymer (FRP) composites have been developed and are used in different sectors, such as automotive, aerospace, marine, civil infrastructure, household appliances, and so on. The extensive acceptance of these materials is due to structural tailorability, light weight, and cost-effective manufac­turing processes. Advancements in these materials have significantly con­tributed toward their potential exploitation in high performance and high precision mobile and immobile structural applications. The most attractive strength of the composite materials lies in their superior specific properties (e.g., strength-to-weight ratio and modulus-to-weight ratio) in conjunction with good impact strength, corrosion resistance, and fatigue and damping characteristics, which motivates engineers to use these materials in quite a wide spectrum of diversified applications. The interface strength between the fiber and matrix is the heart of the FRP composites. Aging in different environmental conditions is essentially fading away their durability and reliability. The environmental parameters may include temperature, mois­ture, ultraviolet light, and other high energy radiation (electromagnetic, microwave, γ rays, etc.). These parameters play important roles in altering the physicochemical structure of the polymeric material. Therefore, the dura­bility of the nano-composites is a challenge in hydrothermal environments. Scientists and researchers have addressed these issues in a different forum. In this book, an attempt has been made to illustrate the durability of these FRP composites at various sets of environmental parameters. Nevertheless, it is focused on the effect of different nanoparticles or fibers on the durabil­ity of the composites in hydrothermal environments. The book has taken the inference of the work performed by different researchers and scientists in the development and characterizations of nano-composites and the effect of different environments on their durability. The ingression of water into the composites is a very common phenomena in the hydrothermal environ­ment, and, hence, the authors have emphasized the effect of a hydrothermal condition on the performance of nano-composites. The first chapter has been focused on the different types of nano-composites and their application in different fields. The common fabrication methods and characterization of nano-composites have been explained in Chapter 2. Organic and inorganic nanofillers are added into the FRP composites to enhance their properties. Nanofillers are added individually or combinedly into the FRP composites to improve the desired properties. Both natural and synthetic fibers are used in the development of composites, and nanofillers are added to the fibers to improve their mechanical properties and durability. However, these composites are subjected to a hydrothermal environment during service. The diffusion of water into the nano-composites for different fibers is dif­ferent. Hence, the water diffusion models developed by different scientists and researchers have been discussed in Chapter 4. Furthermore, the effect of a hydrothermal environment on the mechanical properties of the nano-composites has been discussed in Chapters 5–8. The authors have conceived and compiled the hydrothermal damage and degradation of the advanced structural FRP nano-composites and highlighted the current cutting edge research involving the addition of nanofillers from it. This book is evolving to provide a platform to the researchers and engineers who are working on FRP composite materials. It will help them to design their composites for better durability in hydrothermal environments.

The authors would like to take this opportunity to extend their heart­felt gratitude to the Maulana Azad National Institute of Technology, Bhopal, National Institute of Technology, Rourkela, and KIIT University, Bhubaneswar, India and the beautiful people associated with it.

 

This book is US$10
To get free sample pages OR Buy this book


Share this Book!

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.