Green Composites for Automotive Applications
Edited by Georgios Koronis, Arlindo Silva
Contents
Contributors xi
Preface xv
Part I
Processing and characterization of green composites
Surface modification of natural fibers in polymer composites
Diana P. Ferreira, Juliana Cruz and Raul Fangueiro
1.1 Introduction 3
1.2 Properties of natural fibers 6
1.3 Surface modification techniques 6
1.3.1 Physical methods 10
1.3.2 Chemical methods 15
1.4 Physical and chemical methods as treatments for natural fiber polymer composites (NFPCs) 20
1.4.1 Effects of plasma treatment on NFPCs 20
1.4.2 Natural fibersdchemical treatments and their influence on NFPCs 23
1.5 Biological methods as an alternative to chemical/physical treatments 28
1.5.1 Enzymatic treatment 29
1.5.2 Fungal treatment 30
1.5.3 Bacterial cellulose coating 30
1.6 Nanoparticles deposition/functionalization 31
1.7 Concluding remarks and future trends 32
References 33
Flammability performance of biocomposites
Maya Jacob John
2.1 Introduction 43
2.2 Flammability testing techniques 44
2.2.1 Cone calorimetry 44
2.2.2 Pyrolysis combustion flow calorimetry 45
2.2.3 Limiting oxygen index 45
2.2.4 Underwriters laboratories 94 (UL94) 46
2.2.5 Ohio State University heat release apparatus (OSU) 47
2.3 Case studies 47
2.3.1 Biopolymers and biocomposites 47
2.3.2 Use of green flame retardants 54
2.4 Conclusions 56
References 56
Part II
Thermosetting and thermoplastic materials for
structural applications
Green thermoset reinforced biocomposites
Samson Rwahwire, Blanka Tomkova, Aravin Prince Periyasamy
and Bandu Madhukar Kale
3.1 Introduction 61
3.2 Vegetable oil resins and composites 64
3.2.1 Linseed oil thermoset composites 65
3.2.2 Soybean oil thermoset composites 65
3.2.3 Wheat gluten matrix composites 68
3.2.4 Castor oil resin composites 69
3.2.5 Bio-based polyurethanes 70
3.2.6 Cashew shell nut liquid 71
3.2.7 Zein matrix composites 73
3.2.8 Green epoxy composites 75
3.3 Conclusion and challenges 75
References 76
Further reading 80
Green composites in automotive interior parts:
a solution using cellulosic fibers
N.C. Loureiro and J.L. Esteves
4.1 Introduction 81
4.2 Natural fibers 82
4.3 Green composites in the automotive industry 84
4.4 Case study 85
4.4.1 Materials used 85
4.5 Conclusions 95
References 96
Further reading 97
Eco-impact assessment of a hood made of a ramie
reinforced composite
Koronis and A. Silva
5.1 Introduction 99
5.2 Materials and methods 101
5.2.1 Functional unit and boundary conditions for the
hood 102
5.2.2 Natural fiber incorporation (ramie reinforcement)
and alternative approaches to manufacturing 103
5.2.3 Materials, manufacture, end of life 104
5.3 Results and discussion 106
5.4 Conclusions 111
References 112
Production and modification of nanofibrillated cellulose
composites and potential applications
Md Nazrul Islam and Fatima Rahman
6.1 Introduction 115
6.2 Cellulose and nanocellulose 116
6.2.1 Architecture of cellulose 117
6.2.2 Structures and size of nanocellulose 118
6.3 Pretreatment of biomass fibers 119
6.3.1 Enzyme 119
6.3.2 Alkaline-acid 121
6.3.3 Ionic liquids 121
6.4 Isolation of nanofibrillated cellulose 122
6.4.1 Homogenization 122
6.4.2 Grinding 123
6.4.3 Ultrasonication 123
6.4.4 Electrospinning 124
6.4.5 Cryocrushing 125
6.4.6 Steam explosion 125
6.4.7 Ball milling 126
6.5 Drying of nanofibrillated cellulose 126
6.6 Modifications of nanofibrillated cellulose 126
6.6.1 Acetylation 127
6.6.2 Silylation 128
6.6.3 Application of coupling agents 130
6.6.4 Grafting 130
6.7 Applications of nanofibrillated cellulose 131
6.7.1 General applications 131
6.7.2 Applications in automobile industry 132
6.8 Conclusion 133
References 133
Part III
Nanomaterials and additive manufacturing composites
Nanocomposites with nanofibers and fillers from
renewable resources
Saba, M. Jawaid and M. Asim
7.1 Introduction 145
7.2 Nanomaterials 146
7.3 Renewable nanomaterials 147
7.4 Advantages over micro-sized particles 148
7.4.1 Nanoclays 148
7.4.2 Nanocellulose 149
7.5 Applications of renewable materials 154
7.6 Polymer composites 154
7.7 Polymer nanocomposites 157
7.7.1 Characterization and applications of
nanocomposites 157
7.8 Renewable nanomaterialebased polymer nanocomposites 158
7.9 Applications of nano fillers or nanofibers reinforced
polymer nanocomposites 161
7.10 Conclusions 162
Acknowledgment 162
References 163
3D printing technologies and composite materials for structural applications
Rajkumar Velu, Felix Raspall and Sarat Singamneni
8.1 Introduction 171
8.2 3D printing technologies 174
8.3 Composites and its properties for fabrications 177
8.3.1 Challenges for 3D printing material properties 179
8.4 3D printing of composite materials 183
8.4.1 3D printing of green composite materials 189
8.5 Conclusion and future directions 190
References 190
Biocomposites: present trends and challenges for
the future
Malladi Nagalakshmaiah, Sadaf Afrin, Rajini Priya Malladi,
Saı¨d Elkoun, Mathieu Robert, Mohd Ayub Ansari,
Anna Svedberg and Zoheb Karim
9.1 Introduction 197
9.2 Reinforcement phase 199
9.3 Polymer matrices 201
9.3.1 Renewable source 201
9.3.2 Mixed source 202
9.3.3 Fossil fuelebased source 202
9.4 Bio-composites processing and properties 202
9.4.1 Processing techniques 202
9.4.2 Improved properties 202
9.5 Bionanocomposites 203
9.5.1 Lignin-based bionanocomposites 206
9.5.2 Hemicellulose-based bionanocomposites 206
9.5.3 Nanocellulose-based bionanocomposites 207
9.6 Challenges 208
9.6.1 Challenges at industrial scale 209
9.7 Conclusion 210
References 211
Part IV
Life cycle assessment and risk analysis
Risk-sensitive life cycle assessment of green
composites for automotive applications
Go¨tze, P. Pec¸ as, H.M. Salman, J. Kaufmann and A. Schmidt
10.1 Introduction 219
10.2 Green composites and their LCA: a review 221
10.2.1 Green composites based on natural fibers 221
10.2.2 Advantages and disadvantages of natural
fiber-based composites 225
10.2.3 LCA of Green Composites 228
10.3 Modeling risks of LCA and their management 233
10.3.1 Modeling risks 233
10.3.2 Management of modeling risks 236
10.4 Real-world risks of green composites and their
management 239
10.4.1 Real-world risks of green composites 239
10.4.2 Management of real-world risks 241
10.5 Example from the Automotive Industry 243
10.6 Conclusion 246
References 247
Ramie and jute as natural fibers in a composite
partda life cycle engineering comparison with an
aluminum part
Pec¸ as, I. Ribeiro, H. Carvalho, A. Silva, H.M. Salman and
Henriques
11.1 Introduction 254
11.1.1 The need to be greener 254
11.1.2 Motivation and contribution 254
11.2 Background 255
11.2.1 Natural fibers and green composites 255
11.2.2 Industrial applications of natural fibers 260
11.2.3 Life cycle analysis and case studies from
literature 262
11.3 Bonnet case study 267
11.3.1 Means and methods 268
11.3.2 Materials and assumptions 268
11.3.3 Requirements and FEM analysis 270
11.4 Life cycle studies of different alternatives 271
11.4.1 Raw material and transport 272
11.4.2 Manufacturing phase 274
11.4.3 Use phase 274
11.4.4 End-of-life phase 275
11.4.5 Overall environmental impact and costs during
whole life cycle 275
11.5 Life cycle engineering and CLUBE analysis 276
11.5.1 CLUBE analysis 277
11.6 Conclusions and outlook 279
References 280
Recycling processes and issues in natural
fiber-reinforced polymer composites
Sibele Piedade Cestari, Daniela de Franc¸a da Silva Freitas,
Dayana Coval Rodrigues and Luis Claudio Mendes
12.1 Introduction 285
12.2 Polymers recycling 286
12.3 Polymer composites/nanocomposites 287
12.3.1 Natural fiber-reinforced polymer composites 288
12.3.2 Green automotive composites 295
12.4 Recycling and natural fiber-reinforced composites in the
automotive industry 295
12.5 Conclusion 296
References 297
Index 301