Handbook of Materials Structures, Properties, Processing and Performance PDF by Lawrence E. Murr

By

Handbook of Materials Structures, Properties, Processing and Performance

By Lawrence E. Murr

Handbook of Materials Structures, Properties, Processing and Performance

Contents

Volume 1

Part I The Ages of Metals and Materials . . . . . . . . . . . . . . . . . . . . . 1

A Brief History of Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Examples of Materials Science and Engineering in Antiquity . . . . . . . 11

Part II Electricity and Electromagnetic Phenomena:

The Historical Perspective for Materials Fundamentals . . . . . . . . . . 27

Electromagnetic Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Electromagnetic Color and Color in Materials . . . . . . . . . . . . . . . . . . . 49

Part III Evolution of Quantum Mechanics: Applications to

Electrons in Atoms and Solid Structures . . . . . . . . . . . . . . . . . . . . . . 71

A Brief Introduction to Quantum Mechanics . . . . . . . . . . . . . . . . . . . . 73

Summarizing Atom and Ion Structure: The Periodic Table of the

Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Chemical Forces: Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Chemical Forces: Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Part IV Crystal Structures and Crystal Chemistry . . . . . . . . . . . . . 137

Crystallography Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Lattice Directions and Planes, and Diffraction by Crystals . . . . . . . . . 149

Structure of Metals and Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Aperiodic Crystal Structures: Quasicrystals . . . . . . . . . . . . . . . . . . . . . 183

Electrovalent Crystal Structures and Chemistry . . . . . . . . . . . . . . . . . 193

Structures and Properties of Oxide Superconductors . . . . . . . . . . . . . . 203

Part V Crystal Imperfections in Engineering Materials . . . . . . . . . 221

Point Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Line Defects: Dislocations in Crystalline Materials . . . . . . . . . . . . . . . 235

Planar Defects: Crystal Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Volume Defects: 3D Imperfections in Crystals . . . . . . . . . . . . . . . . . . . 313

Strengthening by Crystal Imperfections . . . . . . . . . . . . . . . . . . . . . . . . 325

Part VI Crystal Physics: Tensor Representation for Physical

Properties of Crystalline Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Examples of Tensor Properties Using Matrix Fundamentals

(A Physical Property) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Tensor Transformation and Crystal Orientation Effects

on Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Elastic Anisotropy in Deformed (Textured) and Directionally

Grown Crystalline and Polycrystalline Materials . . . . . . . . . . . . . . . . . 371

Examples of Directional Crystal Structures: Gas-Turbine

Component Applications in Superalloys . . . . . . . . . . . . . . . . . . . . . . . . 375

Part VII Composite Materials and Structures . . . . . . . . . . . . . . . . . 403

Classification of Composite Materials and Structures . . . . . . . . . . . . . 405

Eutectic Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Examples of Natural Composites and Composite Structures . . . . . . . . 425

Examples of Man-Made Composite Structures . . . . . . . . . . . . . . . . . . . 451

Part VIII Biological Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

Structure and Function of Viruses and Bacteria . . . . . . . . . . . . . . . . . . 467

Structures and Properties of Keratin-Based and Related

Biological Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

Comparison of Biological (Natural) Materials and Engineering

Materials Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

Part IX Biomimetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

Biomimetics and Biologically Inspired Materials . . . . . . . . . . . . . . . . . 521

Part X Biomaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Strategies for Bone Replacement and Tissue Augmentation . . . . . . . . . 555

Implant Materials and Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

Tissue Engineering Scaffolds and Scaffold Materials . . . . . . . . . . . . . . 597

Volume 2

Part XI Advanced Materials Processing and Fabrication:

3D Printing and Additive Manufacturing Technologies . . . . . . . . . 605

Photolithography Applied to Integrated Circuit (IC)

Microfabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

3D Printing: Printed Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

Bioprinting and Biofabrication of Organs . . . . . . . . . . . . . . . . . . . . . . . 629

Rapid Prototyping Technologies: Solid Freeform Fabrication . . . . . . . 639

Digital Fabrication with Embedded Electronics . . . . . . . . . . . . . . . . . . 653

Novel Structure Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

Laser and Electron Beam Melting Technologies . . . . . . . . . . . . . . . . . . 665

3D and Multidimensional Materials Science . . . . . . . . . . . . . . . . . . . . . 687

Additive Manufacturing: Changing the Rules of Manufacturing . . . . . 691

Part XII Nanomaterials: Structure, Properties, Processing

and Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

Serendipitous Nanotechnology in Antiquity . . . . . . . . . . . . . . . . . . . . . 703

Classifications and Structures of Nanomaterials . . . . . . . . . . . . . . . . . . 719

Synthesis and Processing of Nanomaterials . . . . . . . . . . . . . . . . . . . . . . 747

Mechanical and Other Properties of Nanocrystalline Materials . . . . . 767

Performance, Applications, and Health Concerns of

Nanomaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

Part XIII Extreme Deformation of Engineering Materials . . . . . . . 799

Ballistic and Hypervelocity Impact and Penetration . . . . . . . . . . . . . . . 801

Explosive Welding, Forming, and Powder Consolidation . . . . . . . . . . . 863

Friction-Stir Welding and Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 891

Material Processing by Sliding, Grinding, Machining, Extrusion,

and Wire Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913

Part XIV Materials Degradation and Failure . . . . . . . . . . . . . . . . . 925

Fracture Modes and Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927

Chemical and Electrochemical Degradation and Failure

of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969

Materials in Extreme Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 985

Failure of Integrated Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999

Part XV Innovations in Magnetic, Electronic, Optoelectronic

and Photonic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009

Innovations in Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011

Electronic and Optoelectronic Materials and Device Innovations . . . . 1049

Photonic Materials and Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093

Part XVI Computational Modeling and Simulation of

Materials and Materials Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103

Computer Simulation in Materials Science and Engineering . . . . . . . . 1105

Applications and Examples of Multiscale Computer Simulations

in Materials Science and Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 1123

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143

Preface

This handbook is an attempt at innovation as it applies to contemporary and evolving materials science and engineering principles and their many applications. It is intended to be interdisciplinary and multidisciplinary as these apply generally to the realm of science and technology encumbered by materials science and engineering in its broadest sense. This work could have been titled many other broader or specific terms, although handbook itself invokes many interrelated definitions which in fact provide a broader context as it applies to materials structures, properties, processing, and performance. For example, consider the following handbook definitions:

  • A type of reference work or guide book.
  • A treatise on a special subject.
  • A concise manual or reference book providing specific information or instruction about a subject.
  • Comprehensive and detailed work on a particular topic for practitioners,

Structured for quick reference and often used as a supplement to a text book. This handbook ambitiously strives to be all of these. In addition, it can not only serve as a supplement to some specific text, but it can also be configured as a text by selecting specific parts and chapters to be configured for an appropriate course at the graduate or advanced level. While many fundamental topics are briefly reviewed in order for the reader or user (instructor or facilitator) to better appreciate some topic areas, especially what might be considered more advanced materials or materials science and engineering concepts, most of this work is not intended to be used as any configuration of principles of, fundamentals of, or introduction to materials science or materials science and engineering. It is intended to provide specifics as well as an overview of many contemporary materials and materials science and engineering–related topic areas and research areas, especially those which might suggest evolving or future areas relating to advanced materials and manufacturing processes and technologies. In this context, this handbook is intended as a concise guide to contemporary materials science and engineering for the technical professional, especially those involved in leading-edge research and development as well as technology development and forecasting in the context of future product directions involving aspects of advanced materials structures, properties, processing, and performance. These are in fact expanded to ultimately include materials architectures and materials design as it is related to materials simulations and more generally computational issues involving materials science and engineering.

Consistent with these strategies and innovations implicit in the broader context of this Handbook, this work will at first appear as a print and online edition (as an eBook on SpringerLink), and in addition an updated/updatable version will be available on www.SpringerReference.com.

This work in some respects represents an effort encompassing a half-century since it incorporates a wide range of the author’s research relating to materials fundamentals dating to the mid-1960s. It incorporates many stages of class notes over at least the past two decades used in graduate courses in materials science and engineering, especially as a discipline-leveling course to accommodate graduate students in a wide range of science and engineering disciplines as well as materials and materials science and engineering. In this sense, I am indebted to many hundreds of students and colleagues who have contributed to this work in various ways, many of whom are acknowledged in the text or in figure credits and references from which much of the work has been adapted. This includes hundreds of undergraduate and graduate student researchers who have contributed to publishing many hundreds of papers in the international literature and who have been a part of my extended academic family for nearly half a century.

I am especially indebted to my administrative assistant of more than two decades, Faye Ekberg, who typed much of the initial manuscript, and Pamela Kuchle and Abelardo Castrejon, undergraduate student assistants who scanned the many illustrations and made many corrections and additions to the final manuscripts, especially those tendered by my Editorial Advisory Board: Drs. Marc Meyers, Naresh Thadhani, Shujun Li, Wenjun Zhu, and Sridhar Pappu. These represent colleagues, students, and long-standing friends who go back more than four decades. Finally, I must acknowledge the help of Michael Luby, Publishing Editor, Engineering, Springer Science + Business Media (New York), Lydia Mueller, Springer Publishing Product Development Senior Editor, Major Reference Works (Heidelberg), and Karin Bartsch, Springer Publishing Product Development Associate Editor MRW (Heidelberg), who helped to configure my initial proposal and provided guidance and support in producing the final Handbook in its various forms.

This book is US$10
To get free sample pages OR Buy this book


Share this Book!

Leave a Comment


This site uses Akismet to reduce spam. Learn how your comment data is processed.