Handbook of Materials Structures, Properties, Processing and Performance
By Lawrence E. Murr
Contents
Volume 1
Part I The Ages of Metals and Materials . . . . . . . . . . . . . . . . . . . . . 1
A Brief History of Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Examples of Materials Science and Engineering in Antiquity . . . . . . . 11
Part II Electricity and Electromagnetic Phenomena:
The Historical Perspective for Materials Fundamentals . . . . . . . . . . 27
Electromagnetic Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Electromagnetic Color and Color in Materials . . . . . . . . . . . . . . . . . . . 49
Part III Evolution of Quantum Mechanics: Applications to
Electrons in Atoms and Solid Structures . . . . . . . . . . . . . . . . . . . . . . 71
A Brief Introduction to Quantum Mechanics . . . . . . . . . . . . . . . . . . . . 73
Summarizing Atom and Ion Structure: The Periodic Table of the
Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Chemical Forces: Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Chemical Forces: Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Part IV Crystal Structures and Crystal Chemistry . . . . . . . . . . . . . 137
Crystallography Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Lattice Directions and Planes, and Diffraction by Crystals . . . . . . . . . 149
Structure of Metals and Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Aperiodic Crystal Structures: Quasicrystals . . . . . . . . . . . . . . . . . . . . . 183
Electrovalent Crystal Structures and Chemistry . . . . . . . . . . . . . . . . . 193
Structures and Properties of Oxide Superconductors . . . . . . . . . . . . . . 203
Part V Crystal Imperfections in Engineering Materials . . . . . . . . . 221
Point Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Line Defects: Dislocations in Crystalline Materials . . . . . . . . . . . . . . . 235
Planar Defects: Crystal Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Volume Defects: 3D Imperfections in Crystals . . . . . . . . . . . . . . . . . . . 313
Strengthening by Crystal Imperfections . . . . . . . . . . . . . . . . . . . . . . . . 325
Part VI Crystal Physics: Tensor Representation for Physical
Properties of Crystalline Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Examples of Tensor Properties Using Matrix Fundamentals
(A Physical Property) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Tensor Transformation and Crystal Orientation Effects
on Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Elastic Anisotropy in Deformed (Textured) and Directionally
Grown Crystalline and Polycrystalline Materials . . . . . . . . . . . . . . . . . 371
Examples of Directional Crystal Structures: Gas-Turbine
Component Applications in Superalloys . . . . . . . . . . . . . . . . . . . . . . . . 375
Part VII Composite Materials and Structures . . . . . . . . . . . . . . . . . 403
Classification of Composite Materials and Structures . . . . . . . . . . . . . 405
Eutectic Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Examples of Natural Composites and Composite Structures . . . . . . . . 425
Examples of Man-Made Composite Structures . . . . . . . . . . . . . . . . . . . 451
Part VIII Biological Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Structure and Function of Viruses and Bacteria . . . . . . . . . . . . . . . . . . 467
Structures and Properties of Keratin-Based and Related
Biological Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
Comparison of Biological (Natural) Materials and Engineering
Materials Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Part IX Biomimetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Biomimetics and Biologically Inspired Materials . . . . . . . . . . . . . . . . . 521
Part X Biomaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
Strategies for Bone Replacement and Tissue Augmentation . . . . . . . . . 555
Implant Materials and Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
Tissue Engineering Scaffolds and Scaffold Materials . . . . . . . . . . . . . . 597
Volume 2
Part XI Advanced Materials Processing and Fabrication:
3D Printing and Additive Manufacturing Technologies . . . . . . . . . 605
Photolithography Applied to Integrated Circuit (IC)
Microfabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
3D Printing: Printed Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
Bioprinting and Biofabrication of Organs . . . . . . . . . . . . . . . . . . . . . . . 629
Rapid Prototyping Technologies: Solid Freeform Fabrication . . . . . . . 639
Digital Fabrication with Embedded Electronics . . . . . . . . . . . . . . . . . . 653
Novel Structure Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
Laser and Electron Beam Melting Technologies . . . . . . . . . . . . . . . . . . 665
3D and Multidimensional Materials Science . . . . . . . . . . . . . . . . . . . . . 687
Additive Manufacturing: Changing the Rules of Manufacturing . . . . . 691
Part XII Nanomaterials: Structure, Properties, Processing
and Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
Serendipitous Nanotechnology in Antiquity . . . . . . . . . . . . . . . . . . . . . 703
Classifications and Structures of Nanomaterials . . . . . . . . . . . . . . . . . . 719
Synthesis and Processing of Nanomaterials . . . . . . . . . . . . . . . . . . . . . . 747
Mechanical and Other Properties of Nanocrystalline Materials . . . . . 767
Performance, Applications, and Health Concerns of
Nanomaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
Part XIII Extreme Deformation of Engineering Materials . . . . . . . 799
Ballistic and Hypervelocity Impact and Penetration . . . . . . . . . . . . . . . 801
Explosive Welding, Forming, and Powder Consolidation . . . . . . . . . . . 863
Friction-Stir Welding and Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 891
Material Processing by Sliding, Grinding, Machining, Extrusion,
and Wire Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913
Part XIV Materials Degradation and Failure . . . . . . . . . . . . . . . . . 925
Fracture Modes and Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927
Chemical and Electrochemical Degradation and Failure
of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969
Materials in Extreme Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 985
Failure of Integrated Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999
Part XV Innovations in Magnetic, Electronic, Optoelectronic
and Photonic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009
Innovations in Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011
Electronic and Optoelectronic Materials and Device Innovations . . . . 1049
Photonic Materials and Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093
Part XVI Computational Modeling and Simulation of
Materials and Materials Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103
Computer Simulation in Materials Science and Engineering . . . . . . . . 1105
Applications and Examples of Multiscale Computer Simulations
in Materials Science and Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 1123
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143
Preface
This handbook is an attempt at innovation as it applies to contemporary and evolving materials science and engineering principles and their many applications. It is intended to be interdisciplinary and multidisciplinary as these apply generally to the realm of science and technology encumbered by materials science and engineering in its broadest sense. This work could have been titled many other broader or specific terms, although handbook itself invokes many interrelated definitions which in fact provide a broader context as it applies to materials structures, properties, processing, and performance. For example, consider the following handbook definitions:
- A type of reference work or guide book.
- A treatise on a special subject.
- A concise manual or reference book providing specific information or instruction about a subject.
- Comprehensive and detailed work on a particular topic for practitioners,
Structured for quick reference and often used as a supplement to a text book. This handbook ambitiously strives to be all of these. In addition, it can not only serve as a supplement to some specific text, but it can also be configured as a text by selecting specific parts and chapters to be configured for an appropriate course at the graduate or advanced level. While many fundamental topics are briefly reviewed in order for the reader or user (instructor or facilitator) to better appreciate some topic areas, especially what might be considered more advanced materials or materials science and engineering concepts, most of this work is not intended to be used as any configuration of principles of, fundamentals of, or introduction to materials science or materials science and engineering. It is intended to provide specifics as well as an overview of many contemporary materials and materials science and engineering–related topic areas and research areas, especially those which might suggest evolving or future areas relating to advanced materials and manufacturing processes and technologies. In this context, this handbook is intended as a concise guide to contemporary materials science and engineering for the technical professional, especially those involved in leading-edge research and development as well as technology development and forecasting in the context of future product directions involving aspects of advanced materials structures, properties, processing, and performance. These are in fact expanded to ultimately include materials architectures and materials design as it is related to materials simulations and more generally computational issues involving materials science and engineering.
Consistent with these strategies and innovations implicit in the broader context of this Handbook, this work will at first appear as a print and online edition (as an eBook on SpringerLink), and in addition an updated/updatable version will be available on www.SpringerReference.com.
This work in some respects represents an effort encompassing a half-century since it incorporates a wide range of the author’s research relating to materials fundamentals dating to the mid-1960s. It incorporates many stages of class notes over at least the past two decades used in graduate courses in materials science and engineering, especially as a discipline-leveling course to accommodate graduate students in a wide range of science and engineering disciplines as well as materials and materials science and engineering. In this sense, I am indebted to many hundreds of students and colleagues who have contributed to this work in various ways, many of whom are acknowledged in the text or in figure credits and references from which much of the work has been adapted. This includes hundreds of undergraduate and graduate student researchers who have contributed to publishing many hundreds of papers in the international literature and who have been a part of my extended academic family for nearly half a century.
I am especially indebted to my administrative assistant of more than two decades, Faye Ekberg, who typed much of the initial manuscript, and Pamela Kuchle and Abelardo Castrejon, undergraduate student assistants who scanned the many illustrations and made many corrections and additions to the final manuscripts, especially those tendered by my Editorial Advisory Board: Drs. Marc Meyers, Naresh Thadhani, Shujun Li, Wenjun Zhu, and Sridhar Pappu. These represent colleagues, students, and long-standing friends who go back more than four decades. Finally, I must acknowledge the help of Michael Luby, Publishing Editor, Engineering, Springer Science + Business Media (New York), Lydia Mueller, Springer Publishing Product Development Senior Editor, Major Reference Works (Heidelberg), and Karin Bartsch, Springer Publishing Product Development Associate Editor MRW (Heidelberg), who helped to configure my initial proposal and provided guidance and support in producing the final Handbook in its various forms.