Chemical Reaction Technology, 2nd Edition
By Dmitry Yu. Murzin
Contents:
Preface to the first edition V
Preface to the second edition VII
About the author XV
Chapter 1
Chemical technology as science 1
1.1 Basic principles 1
1.1.1 Continuous or batch? 2
1.1.2 Multilevel chemical processing 5
1.1.3 Large or small chemical plants? 8
1.2 Alternative production routes 10
1.3 Evaluation of chemical processes 12
1.4 Chemical process design 13
1.4.1 Economic aspects 13
1.4.2 Flow schemes 17
1.4.3 Sustainable and safe chemical technology: process intensification 23
1.4.4 Waste management 40
1.4.5 Conceptual process design 46
1.4.6 Process control (compiled together with Dr. Eugene Mourzine,
University of Akron) 55
1.4.7 Product design 59
1.4.8 Patents 66
Chapter 2
Physico-chemical foundations of chemical processes 69
2.1 Stoichiometry 69
2.2 Thermodynamics 72
2.3 Catalysis 76
2.4 Kinetics 85
2.5 Mass transfer 88
Chapter 3
Chemical processes and unit operations 95
3.1 Overview of unit operations 95
3.2 Mechanical and hydromechanical processes 96
3.2.1 Sedimentation 96
3.2.2 Filtration 100
3.2.3 Mixing of emulsions 104
3.2.4 Size reduction 104
3.2.5 Size enlargement 105
3.2.5.1 Tableting 107
3.2.5.2 Extrusion 109
3.3 Mass transfer processes 112
3.3.1 Distillation 112
3.3.2 Extraction 122
3.3.3 Adsorption 125
3.3.4 Absorption 129
3.3.5 Crystallization and precipitation 137
3.3.6 Leaching 147
3.4 Chemical reactors 148
3.4.1 Homogeneous processes 149
3.4.2 Non-catalytic heterogeneous processes 151
3.4.3 Catalytic reactors 159
3.4.3.1 Two-phase reactors 160
3.4.3.2 Three-phase catalytic reactors 166
Chapter 4
Chemical process industry 172
4.1 General overview 172
4.2 Feedstock for chemical process industries 177
4.3 Oil refining 186
4.4 Natural gas processing 196
4.5 Processing of coal 196
4.6 Biomass processing 201
Chapter 5
Hydrogen and syngas generation 218
5.1 Steam reforming of natural gas 218
5.2 Gasification 236
5.3 Water-gas shift reaction 241
Chapter 6
Cracking 244
6.1 General 244
6.2 Visbreaking 244
6.3 Hydrocracking 248
6.4 Fluid catalytic cracking 265
6.5 Steam cracking 284
Chapter 7
Isomerization 295
7.1 Skeletal isomerization 295
7.2 Combining skeletal isomerization and dehydrogenation: catalytic reforming of gasoline fractions 301
7.3 Epimerization 309
Chapter 8
Halogenation 312
8.1 Radical chlorination 312
8.1.1 Liquid-phase chlorination 313
8.1.2 Gas-phase chlorination 316
8.2 Catalytic chlorination 318
8.3 Hydrohalogenation 321
8.4 Oxychlorination 323
8.5 Fluorination 329
Chapter 9
Oxidation 333
9.1 Oxidation of inorganic compounds 333
9.1.1 Nitric acid 333
9.1.2 Sulphuric acid 337
9.1.3 The Claus process 344
9.1.4 Deacon reaction 345
9.2 Oxidation of organic compounds 347
9.2.1 Heterogeneous catalytic oxidation 347
9.2.1.1 Ethylene and propylene oxide 348
9.2.1.2 Acrylic acid 353
9.2.1.3 Formaldehyde 357
9.2.1.4 Maleic anhydride 362
9.2.1.5 Phthalic anhydride 365
9.2.1.6 Acrylonitrile 375
9.2.1.7 Synthesis of acetic acid by oxidation 380
9.2.2 Liquid-phase oxidation 382
9.2.2.1 Cyclohexane oxidation 383
9.2.2.2 Cyclohexanol oxidation 387
9.2.2.3 Xylene oxidation to terephthalic acid 389
9.2.2.4 Synthesis of acetaldehyde by oxidation: the Wacker process 392
9.2.2.5 Synthesis of phenol and acetone by isopropylbenzene
oxidation 395
9.2.2.6 Hydrogen peroxide 399
Chapter 10
Hydrogenation and dehydrogenation 404
10.1 General 404
10.2 Ammonia synthesis 407
10.3 Gas-phase hydrogenation 414
10.4 Liquid-phase hydrogenation 415
10.4.1 Nitrobenzene hydrogenation 419
10.4.2 Liquid-phase C5+ olefins hydrogenation 420
10.5 Hydrotreating 421
10.6 Dehydrogenation 425
10.6.1 Dehydrogenation of light alkanes 426
10.6.2 Dehydrogenation of ethylbenzene to styrene 434
Chapter 11
Reactions involving water: hydration, dehydration, etherification, hydrolysis, and esterification 440
11.1 Hydration and dehydration 440
11.2 Hydrolysis 450
11.2.1 Acid-catalyzed hydrolysis of wood 451
11.2.2 Enzymatic hydrolysis of acyl-l-amino acids 453
11.2.3 Hydrolysis of fatty acid triglycerides 454
11.3 Esterification 455
Chapter 12
Alkylation 459
12.1 Alkylation of aromatics 459
12.2 Alkylation of olefins 467
12.3 O-Alkylation 475
12.4 N-Alkylation 481
12.5 Oxyalkylation 483
Chapter 13
Reactions with CO, CO2, and synthesis gas 488
13.1 Carbonylation 488
13.2 Carboxylation 492
13.2.1 Kolbe-Schmidt synthesis 492
13.2.2 Synthesis of ethylene glycol 494
13.2.3 Urea from CO2 and ammonia 495
13.2.4 Synthesis of melamine 507
13.3 Methanol from synthesis gas 512
13.4 Hydrocarbons from synthesis gas: Fischer-Tropsch synthesis 521
13.5 Reactions of olefins with synthesis gas: hydroformylation 535
Chapter 14
Key reactions in the synthesis of intermediates: nitration, sulfation, sulfonation, alkali fusion, ketone, and aldehyde condensation 549
14.1 Nitration 549
14.2 Sulfation and sulfonation 555
14.2.1 Sulfation 555
14.2.2 Sulfonation 558
14.3 Alkali fusion 563
14.4 Carbonyl condensation reactions 565
14.4.1 Condensation with olefins (Prins reaction) 566
14.4.2 Condensation with aromatic compounds 569
14.4.3 Aldol condensation 572
14.5 Caprolactam production 573
14.5.1 Condensation of cyclohexanone to cyclohexanone oxime and subsequent Beckmann rearrangement 573
14.5.2 Methods for caprolactam production 581
Chapter 15
Oligomerization and polymerization 588
15.1 Combining double bond isomerization, oligomerization, and metathesis: production of linear alkenes (SHOP) 588
15.2 Polymers 590
15.3 Step-growth polymerization 591
15.4 Polymerization process options 599
15.4.1 Homogeneous polymerization in substance 599
15.4.2 Homogeneous polymerization in solution 601
15.5 Heterogeneous polymerization 602
15.5.1 Precipitation polymerization 602
15.5.2 Suspension and emulsion polymerization 608
Final words 613
Index 615