Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play, 2nd Edition by David Foster

By

Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play, 2nd Edition

David Foster

Generative Deep Learning

Table of Contents

Foreword. . . . . . . . . . . . . .. . . . . . . . . . . . . xv

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Part I. Introduction to Generative Deep Learning

Generative Modeling. . . . . . . . . . . . . . . . . . . . . . . . 3

What Is Generative Modeling? 4

Generative Versus Discriminative Modeling 5

The Rise of Generative Modeling 6

Generative Modeling and AI 8

Our First Generative Model 9

Hello World! 9

The Generative Modeling Framework 10

Representation Learning 12

Core Probability Theory 15

Generative Model Taxonomy 18

The Generative Deep Learning Codebase 20

Cloning the Repository 20

Using Docker 21

Running on a GPU 21

Summary 21

Deep Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Data for Deep Learning 24

Deep Neural Networks 25

What Is a Neural Network? 25

Learning High-Level Features 26

TensorFlow and Keras 27

Multilayer Perceptron (MLP) 28

Preparing the Data 28

Building the Model 30

Compiling the Model 35

Training the Model 37

Evaluating the Model 38

Convolutional Neural Network (CNN) 40

Convolutional Layers 41

Batch Normalization 46

Dropout 49

Building the CNN 51

Training and Evaluating the CNN 53

Summary 54

Part II. Methods

Variational Autoencoders. . . . . . .. . . . . . . . . . . . . . . 59

Introduction 60

Autoencoders 61

The Fashion-MNIST Dataset 62

The Autoencoder Architecture 63

The Encoder 64

The Decoder 65

Joining the Encoder to the Decoder 67

Reconstructing Images 69

Visualizing the Latent Space 70

Generating New Images 71

Variational Autoencoders 74

The Encoder 75

The Loss Function 80

Training the Variational Autoencoder 82

Analysis of the Variational Autoencoder 84

Exploring the Latent Space 85

The CelebA Dataset 85

Training the Variational Autoencoder 87

Analysis of the Variational Autoencoder 89

Generating New Faces 90

Latent Space Arithmetic 91

Morphing Between Faces 92

Summary 93

Generative Adversarial Networks. . . . . . . . . . . . . . . . . 95

Introduction 96

Deep Convolutional GAN (DCGAN) 97

The Bricks Dataset 98

The Discriminator 99

The Generator 101

Training the DCGAN 104

Analysis of the DCGAN 109

GAN Training: Tips and Tricks 110

Wasserstein GAN with Gradient Penalty (WGAN-GP) 113

Wasserstein Loss 114

The Lipschitz Constraint 115

Enforcing the Lipschitz Constraint 116

The Gradient Penalty Loss 117

Training the WGAN-GP 119

Analysis of the WGAN-GP 121

Conditional GAN (CGAN) 122

CGAN Architecture 123

Training the CGAN 124

Analysis of the CGAN 126

Summary 127

Autoregressive Models. . . . . . . . . . . . . . 129

Introduction 130

Long Short-Term Memory Network (LSTM) 131

The Recipes Dataset 132

Working with Text Data 133

Tokenization 134

Creating the Training Set 137

The LSTM Architecture 138

The Embedding Layer 138

The LSTM Layer 140

The LSTM Cell 142

Training the LSTM 144

Analysis of the LSTM 146

Recurrent Neural Network (RNN) Extensions 149

Stacked Recurrent Networks 149

Gated Recurrent Units 151

Bidirectional Cells 153

PixelCNN 153

Masked Convolutional Layers 154

Residual Blocks 156

Training the PixelCNN 158

Analysis of the PixelCNN 159

Mixture Distributions 162

Summary 164

Normalizing Flow Models. . . . . . . . . . . . . . . . . . 167

Introduction 168

Normalizing Flows 169

Change of Variables 170

The Jacobian Determinant 172

The Change of Variables Equation 173

RealNVP 174

The Two Moons Dataset 174

Coupling Layers 175

Training the RealNVP Model 181

Analysis of the RealNVP Model 184

Other Normalizing Flow Models 186

GLOW 186

FFJORD 187

Summary 188

Energy-Based Models. . . .  . . . . . . . . 189

Introduction 189

Energy-Based Models 191

The MNIST Dataset 192

The Energy Function 193

Sampling Using Langevin Dynamics 194

Training with Contrastive Divergence 197

Analysis of the Energy-Based Model 201

Other Energy-Based Models 202

Summary 203

Diffusion Models. . . . . . . . . . . . . . . 205

Introduction 206

Denoising Diffusion Models (DDM) 208

The Flowers Dataset 208

The Forward Diffusion Process 209

The Reparameterization Trick 210

Diffusion Schedules 211

The Reverse Diffusion Process 214

The U-Net Denoising Model 217

Training the Diffusion Model 224

Sampling from the Denoising Diffusion Model 225

Analysis of the Diffusion Model 228

Summary 231

Part III. Applications

Transformers. . . . . . . . . . . . . . . . . . . . 235

Introduction 236

GPT 236

The Wine Reviews Dataset 237

Attention 238

Queries, Keys, and Values 239

Multihead Attention 241

Causal Masking 242

The Transformer Block 245

Positional Encoding 248

Training GPT 250

Analysis of GPT 252

Other Transformers 255

T5 256

GPT-3 and GPT-4 259

ChatGPT 260

Summary 264

  1. Advanced GANs. . . . . . . . . . . . . 267

Introduction 268

ProGAN 269

Progressive Training 269

Outputs 276

StyleGAN 277

The Mapping Network 278

The Synthesis Network 279

Outputs from StyleGAN 280

StyleGAN2 281

Weight Modulation and Demodulation 282

Path Length Regularization 283

No Progressive Growing 284

Outputs from StyleGAN2 286

Other Important GANs 286

Self-Attention GAN (SAGAN) 286

BigGAN 288

VQ-GAN 289

ViT VQ-GAN 292

Summary 294

Music Generation. . . . . . . . . . . . . . . . . 297

Introduction 298

Transformers for Music Generation 299

The Bach Cello Suite Dataset 300

Parsing MIDI Files 300

Tokenization 303

Creating the Training Set 304

Sine Position Encoding 305

Multiple Inputs and Outputs 307

Analysis of the Music-Generating Transformer 309

Tokenization of Polyphonic Music 313

MuseGAN 317

The Bach Chorale Dataset 317

The MuseGAN Generator 320

The MuseGAN Critic 326

Analysis of the MuseGAN 327

Summary 329

World Models. . . . . . . . . . . . . . . . . 331

Introduction 331

Reinforcement Learning 332

The CarRacing Environment 334

World Model Overview 336

Architecture 336

Training 338

Collecting Random Rollout Data 339

Training the VAE 340

The VAE Architecture 341

Exploring the VAE 343

Collecting Data to Train the MDN-RNN 346

Training the MDN-RNN 346

The MDN-RNN Architecture 347

Sampling from the MDN-RNN 348

Training the Controller 348

The Controller Architecture 349

CMA-ES 349

Parallelizing CMA-ES 351

In-Dream Training 353

Summary 356

Multimodal Models. . . . . . . . . . . . . . . . . . . 359

Introduction 360

DALL.E 2 361

Architecture 362

The Text Encoder 362

CLIP 362

The Prior 367

The Decoder 369

Examples from DALL.E 2 373

Imagen 377

Architecture 377

DrawBench 378

Examples from Imagen 379

Stable Diffusion 380

Architecture 380

Examples from Stable Diffusion 381

Flamingo 381

Architecture 382

The Vision Encoder 382

The Perceiver Resampler 383

The Language Model 385

Examples from Flamingo 388

Summary 389

Conclusion. . . . . . . . . . . . . . .. . . 391

Timeline of Generative AI 392

2014–2017: The VAE and GAN Era 394

2018–2019: The Transformer Era 394

2020–2022: The Big Model Era 395

The Current State of Generative AI 396

Large Language Models 396

Text-to-Code Models 400

Text-to-Image Models 402

Other Applications 405

The Future of Generative AI 407

Generative AI in Everyday Life 407

Generative AI in the Workplace 409

Generative AI in Education 410

Generative AI Ethics and Challenges 411

Final Thoughts 413

Index. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 417

This book is US$10
To get free sample pages OR Buy this book


Share this Book!

Leave a Comment


This site uses Akismet to reduce spam. Learn how your comment data is processed.