Financial Mathematics, Derivatives and Structured Products, Second Edition

By

Financial Mathematics, Derivatives and Structured Products, Second Edition

Raymond H. Chan, Yves ZY. Guo, Spike T. Lee and Xun Li

Financial Mathematics, Derivatives and Structured Products

Contents

Part I Financial Markets

1 Introduction to Financial Markets … . 3 … .

1.1 Investable Assets and Financial Instruments … . . . . . . 3 … . . . . . .

1.2 Investment Returns and Risks … 5 …

1.3 Investment Performance Measures… . . . . . . . . . 6 … . . . . . . . . .

1.4 Financial Markets … . . . . . . . . . . . . . 7 … . . . . . . . . . . . . .

1.5 Central Counterparty (CCP) … . . 8 … . .

1.6 Securities Lending and Repo … . 8 … .

1.7 Derivatives Activities … . . . . . . . . . 10 … . . . . . . . . .

2 Financial Transactions and Counterparty Risk Management* . . . . . . . 13 . . . . . . .

2.1 Concepts in the Life Cycle of a Financial Transaction . . . . . . . . . . . . 13 . . . . . . . . . . . .

2.2 Margining Methods for Mitigating Counterparty Risk. . . . . . . . . . . . 15 . . . . . . . . . . . .

2.3 Exchange-Traded Derivatives* ..16 ..

2.4 OTC Derivatives* … . . . . . . . . . . . . . 17 … . . . . . . . . . . . . .

2.4.1 OTC Derivatives Documentation* … . . . . . . 17 … . . . . . .

2.4.2 Centralized Clearing*… . . . . . . . . . . . . 18 … . . . . . . . . . . . .

2.4.3 Non-Centrally Cleared Derivatives* … . . . . 19 … . . . .

2.5 Risk Management for Investment Financing* … . . . . . 20 … . . . . .

3 Interest Rate Instruments: I … . . . . . . . . . 21 … . . . . . . . . .

3.1 Interest Rate Conventions … . . . . 21 … . . . .

3.1.1 Day Count Convention … . . . . . . . . . . 21 … . . . . . . . . . .

3.1.2 Business Day Convention … . . . . . . . 22 … . . . . . . .

3.2 Interest Rate Types and Zero Coupon Bond ..22 ..

3.2.1 Simple Rate … . . . . . . . . 23 … . . . . . . . .

3.2.2 Compound Rate … . . . . 23 … . . . .

3.2.3 Continuous Rate … . . . 23 … . . .

3.2.4 Conversion of Interest Rates … . . . . 24 … . . . .

3.2.5 Zero Coupon Bond… . 24 … .

3.3 Money Market Instruments … . . . 25 … . . .

3.4 Reference (Floating) Rates in Financial Market … . . . 25 … . . .

3.4.1 Front-Fixed Reference Rates … . . . . 26 … . . . .

3.4.2 Rear-Fixed Reference Rates … . . . . . 27 … . . . . .

3.5 Bonds ….. . . . 28 ….. . . .

3.5.1 Bond Features and Types … . . . . . . . . 28 … . . . . . . . .

3.5.2 Bond Quotation and Yield to Maturity … . 29 … .

3.5.3 Duration, Modified Duration, BPV, DV01 and Convexity… . . . . . . . . . . . 31

3.6 Credit Rating ….. . . . 33 ….. . . .

3.7 Main Risks for a Debt Security … . . . . . . . . . . . . 33

4 Interest Rate Instruments: II … . . . . . . . . 35 … . . . . . . . .

4.1 Forward Rate Agreement and Single-Period Swap ..35 ..

4.2 Interest Rate Futures … . . . . . . . . . . 37 … . . . . . . . . . .

4.2.1 Short-Term Interest Rate (STIR) Futures ..37 ..

4.2.2 Treasury Bond Futures* … . . . . . . . . . 39 … . . . . . . . . .

4.3 Interest Rate Swap (IRS) … . . . . . 40 … . . . . .

4.3.1 Asset Swap as an IRS Application … . . . . . . 41 … . . . . . .

4.3.2 IRS Valuation … . . . . . . 41 … . . . . . .

4.3.3 Overnight Indexed Swap (OIS) … . 43 … .

4.3.4 Other Interest Rate Swaps*… . . . . . . 43 … . . . . . .

4.3.5 Swap Clearing* … . . . . 43 … . . . .

4.3.6 Swap Futures* … . . . . . 44 … . . . . .

4.4 Yield Curve Construction… . . . . . 44 … . . . . .

4.4.1 Yield Curve … . . . . . . . . 44 … . . . . . . . .

4.4.2 Interpolation Method for Yield Curve … . . 45 … . .

4.4.3 Bootstrapping Method … . . . . . . . . . . . 45 … . . . . . . . . . . .

4.4.4 Illustration Example for Yield Curve Construction . . . . 46 . . . .

4.5 Multiple Zero-Coupon Curves* … . . . . . . . . . . . . 48 … . . . . . . . . . . . .

5 Equities and Equity Indices … . . . . . . . . . 51 … . . . . . . . . .

5.1 Equity….. . . . 51 ….. . . .

5.2 Corporate Actions… . . . . . . . . . . . . . 52 … . . . . . . . . . . . . .

5.2.1 Stock Dividend… . . . . . 52 … . . . . .

5.2.2 Stock Split, Reverse Stock Split, Rights Issue* . . . . . . . . 53 . . . . . . . .

5.2.3 Impact of Corporate Actions* … . . . 53 … . . .

5.2.4 No-Arbitrage Condition for Derivatives Price and Contract Terms Adjustment* ..54 ..

5.2.5 Total Return Asset* … 54 …

5.2.6 Historical Price Adjustment due to Corporate Actions* … . . . . . . . . . . . . 55 … . . . . . . . . . . . .

5.3 Equity Index….. . . . . 56 ….. . . . .

5.4 Equity Forward and Cash and Carry Strategy … . . . . . 57 … . . . . .

5.5 Equity Index Futures… . . . . . . . . . . 59 … . . . . . . . . . .

5.6 Equity Swap* ….. . . 59 ….. . .

6 Foreign Exchange Instruments … . . . . . 61 … . . . . .

6.1 Quotation Conventions … . . . . . . . 61 … . . . . . . .

6.2 FX Spot, Forward, Swap, Non-deliverable Forward (NDF) . . . . . . 62 . . . . . .

6.3 Interest Rate Parity for FX Forward … . . . . . . . 63 … . . . . . . .

6.4 Cross Currency Swap and Non-deliverable Swap (NDS) . . . . . . . . . 64 . . . . . . . . .

7 Commodities ….. . . . 69 ….. . . .

7.1 Commodities Overview… . . . . . . . 69 … . . . . . . .

7.2 Commodity Forward and Futures … . . . . . . . . . . 70 … . . . . . . . . . .

7.3 A Special Commodity: Gold … . 72 … .

8 Credit Derivatives ….. . . . . . 75 ….. . . . . .

8.1 Credit Default Swap (CDS) … . . 75 … . .

8.2 CLN (Credit Linked Note) … . . . 76 … . . .

8.3 Credit Index* ….. . . . 77 ….. . . .

8.4 Collateralized Debt Obligation (CDO)* … . . . 78 … . . .

8.4.1 Synthetic CDO* … . . . 80 … . . .

8.4.2 Single Tranches on Credit Index*..80 ..

9 Investment Funds ….. . . . . . . 83 ….. . . . . . .

9.1 Funds ….. . . . 83 ….. . . .

9.1.1 Fund NAV and Fees… 84 …

9.1.2 Fund Organization* … 84 …

9.1.3 Share Classes* … . . . . . 85 … . . . . .

9.2 Mutual Fund….. . . . . 86 ….. . . . .

9.3 Hedge Fund* ….. . . . 86 ….. . . .

9.4 Fund Structures* ….88 ….

9.5 Fund Derivatives* … . . . . . . . . . . . . . 89 … . . . . . . . . . . . . .

10 Options….. . . . . . . . . . . 91 ….. . . . . . . . . . .

10.1 Option General Features … . . . . . . 92 … . . . . . .

10.1.1 Option Style … . . . . . . . . 92 … . . . . . . . .

10.1.2 Moneyness of an Option… . . . . . . . . . 92 … . . . . . . . . .

10.1.3 Notional Amount Definition … . . . . 93 … . . . .

10.2 Option Price, Intrinsic Value and Time Value … . . . . . 93 … . . . . .

10.3 Vanilla Options….. . 94 ….. .

10.3.1 Equity Options … . . . . . 94 … . . . . .

10.3.2 Foreign Exchange Options … . . . . . . 95 … . . . . . .

10.3.3 Commodity Options ..95 ..

10.3.4 Interest Rate Options* … . . . . . . . . . . . 95 … . . . . . . . . . . .

10.3.5 Option Pricing, Hedging, and Execution* . . . . . . . . . . . . . . 97 . . . . . . . . . . . . . .

10.3.6 Implied Volatility* … . 98 … .

10.3.7 Put-Call Parity … . . . . . 100 … . . . . .

10.3.8 Popular Strategies with European Options . . . . . . . . . . . . . 101 . . . . . . . . . . . . .

10.3.9 American Options… . . 103 … . .

10.4 Exotic Options ….. . 104 ….. .

10.4.1 Barrier Option … . . . . . . 105 … . . . . . .

10.4.2 Binary (or Digital) Option … . . . . . . . 105 … . . . . . . .

10.4.3 In-Out Parity* … . . . . . . 106 … . . . . . .

10.4.4 Asian Option or Average Option … 106 …

10.4.5 Lookback Option … . . 107 … . .

10.4.6 Quanto Option and Composite Option… . . 107 … . .

10.4.7 Basket Option, Worst-of, and Rainbow Options . . . . . . . 108 . . . . . . .

10.5 Derivatives Modelling Framework* … . . . . . . . 109 … . . . . . . .

10.5.1 Purpose of Derivatives Modelling..109 ..

10.5.2 Model Input Parameters and Calibration* . . . . . . . . . . . . . . 110 . . . . . . . . . . . . . .

10.5.3 Historical Volatility and Correlation*… . . . 110 … . . .

11 Introduction to Structured Products ..113 ..

11.1 Background and Purpose of Structured Products… . . 113 … . .

11.2 Principal Protected Product Example … . . . . . . 114 … . . . . . .

11.3 Non-principal Protected Product Example … 115 …

11.4 Quanto Feature in Structured Products … . . . . 117 … . . . .

11.5 Risks of Structured Products to Investors … . . 118 … . .

Part II Stochastic Calculus and Financial Modelling

12 Review of Basic Probability Concepts … . . . . . . . . . . . . 121 … . . . . . . . . . . . .

12.1 Probability Space, Measure, and Properties ..121 ..

12.2 Independence and Conditional Probability … 122 …

12.3 Random Variable and Distribution … . . . . . . . . . 124 … . . . . . . . . .

12.3.1 Distribution… . . . . . . . . . 124 … . . . . . . . . .

12.3.2 Expectation … . . . . . . . . . 126 … . . . . . . . . .

12.3.3 Variance and Covariance … . . . . . . . . 127 … . . . . . . . .

12.3.4 Independent Random Variables … . 129 … .

12.3.5 Conditional Probability Distribution … . . . . 129 … . . . .

12.3.6 Conditional Expectation Given Event … . . 130 … . .

12.3.7 Characteristic and Moment Generating Functions . . . . . 130 . . . . .

12.3.8 Normal Distribution ..131 ..

12.3.9 Exponential Distribution … . . . . . . . . 133 … . . . . . . . .

12.3.10 Poisson Distribution ..134 ..

12.4 Limit Theorems ….. 134 …..

12.4.1 Law of Large Numbers … . . . . . . . . . . 134 … . . . . . . . . . .

12.4.2 Central Limit Theorem … . . . . . . . . . . 135 … . . . . . . . . . .

12.4.3 Confidence Interval … 135 …

13 Stochastic Calculus: I ….. . 137 ….. .

13.1 Stochastic Process … . . . . . . . . . . . . 137 … . . . . . . . . . . . .

13.2 Conditional Expectation Given σ-Algebra* ..138 ..

13.3 Martingale, Stopping Time … . . . 142 … . . .

13.4 Markov Property*… . . . . . . . . . . . . . 142 … . . . . . . . . . . . . .

13.5 Quadratic Variation … . . . . . . . . . . . 143 … . . . . . . . . . . .

13.6 Brownian Motion … . . . . . . . . . . . . . 144 … . . . . . . . . . . . . .

13.7 Itô Integral and Itô Calculus … . . 148 … . .

13.8 Poisson Process* ….151 ….

14 Black–Scholes–Merton Model for Option Pricing … . . . . . . 155 … . . . . . .

14.1 The Black–Scholes–Merton Model … . . . . . . . . 155 … . . . . . . . .

14.2 Derivation of the Black–Scholes Equation … 157 …

14.3 Black–Scholes Formulas for Vanilla Options … . . . . . 161 … . . . . .

14.4 Derivatives Price Sensitivities (Greeks)… . . . . 163 … . . . .

14.5 Practical Issues in Hedging* … . 166 … .

14.5.1 Hedging Instruments and Hedging Ratios . . . . . . . . . . . . . . 166 . . . . . . . . . . . . . .

14.5.2 Discrete Hedging … . . 167 … . .

14.5.3 Delta-Hedging P/L … . 168 … .

14.5.4 Motivation for Volatility Modelling… . . . . . 169 … . . . . .

14.5.5 Transaction Cost* … . . 169 … . .

15 Stochastic Calculus: II ….. 173 …..

15.1 Change of Probability… . . . . . . . . . 173 … . . . . . . . . .

15.2 Predictable Martingale Representation … . . . . 177 … . . . .

15.3 Stochastic Differential Equations … . . . . . . . . . . 178 … . . . . . . . . . .

15.4 Kolmogorov Equations* … . . . . . . 181 … . . . . . .

15.5 Breeden–Litzenberger Formulas* … . . . . . . . . . . 184 … . . . . . . . . . .

15.6 Further Properties of Brownian Motion (BM)* … . . . 185 … . . .

15.6.1 Covariance of Brownian Motions ..185 ..

15.6.2 First Passage Time … . 185 … .

15.6.3 Extremum to Date … . 185 … .

15.6.4 Reflection Principle … 186 …

15.6.5 Distribution of First Passage Time … . . . . . . 187 … . . . . . .

15.6.6 Joint Distribution for BM Extremum … . . . 188 … . . .

15.6.7 Conditional Distribution for Drifted BM Extremum . . . 189 . . .

16 Risk-Neutral Pricing Framework… . . . 195 … . . .

16.1 Money Market Account and Discounting … . 195 … .

16.2 Self-Financing Portfolio … . . . . . . 196 … . . . . . .

16.2.1 Properties of a Self-Financing Portfolio … 196 …

16.2.2 Excess Return, Self-Financing and Portfolio Return . . . 197 . . .

16.3 Risk-Neutral Probability Measure … . . . . . . . . . 198 … . . . . . . . . .

16.4 Pricing and Hedging of Derivatives … . . . . . . . . 199 … . . . . . . . .

16.5 Discussion on Hedging, Pricing and Risk-Neutral Framework . . . 201 . . .

16.6 The Black–Scholes–Merton Model Revisited … . . . . . 203 … . . . . .

16.6.1 Closed-Form Formulas for European Vanilla Options … . . . . . . . . . . . . . 203 … . . . . . . . . . . . . .

16.6.2 Vega-Gamma Relationship*… . . . . . 204 … . . . . .

16.7 Dividend Modelling … . . . . . . . . . . 206 … . . . . . . . . . .

16.7.1 Dividend Types … . . . . 206 … . . . .

16.7.2 Continuous Dividend Modelling … 206 …

16.7.3 Discrete Dividend Modelling* … . . 207 … . .

16.7.4 Adjustment to Derivatives for Corporate Actions*. . . . . 209 . . . . .

16.8 Collateralized Derivative Pricing and FVA*..210 ..

16.9 Futures and Forward Modelling* … . . . . . . . . . . 211 … . . . . . . . . . .

16.9.1 Futures….211 ….

16.9.2 Forward… . . . . . . . . . . . . . 212 … . . . . . . . . . . . . .

16.9.3 Futures/Forward Convexity Adjustment … 213 …

16.10 Overview on Numerical Methods for Option Pricing . . . . . . . . . . . . . 214 . . . . . . . . . . . . .

17 Numéraires and Vanilla Interest Rate Options Pricing* ..217 ..

17.1 Introduction of Numéraire … . . . . 217 … . . . .

17.2 Change of Numéraire … . . . . . . . . . 218 … . . . . . . . . .

17.3 Generalized Risk-Neutral Framework … . . . . . 219 … . . . . .

17.4 Usual Numéraires and Vanilla Interest Rate Options Pricing . . . . . 221 . . . . .

17.4.1 Money Market Account Numéraire … . . . . . 221 … . . . . .

17.4.2 Zero-Coupon Bond Numéraire and Cap/Floor Pricing ….222 ….

17.4.3 Annuity Factor Numéraire and Swaption Pricing . . . . . . 223 . . . . . .

17.4.4 SABR Model for Vanilla Interest Rate Options . . . . . . . . 224 . . . . . . . .

18 Foreign Exchange Modelling … . . . . . . . . 225 … . . . . . . . .

18.1 Stochastic Model for Foreign Exchange Rate … . . . . . 225 … . . . . .

18.1.1 Cross Rate Volatility ..226 ..

18.2 Pricing Formulas for Vanilla Options and FX Option Duality. . . . 226 . . . .

18.2.1 FX Option Duality … . 227 … .

18.3 SDE for Foreign Asset Under Domestic Risk-Neutral Probability ….. . . . . . . 227 ….. . . . . . .

18.4 Quanto Option ….. . 230 ….. .

18.5 Composite Option… . . . . . . . . . . . . . 231 … . . . . . . . . . . . . .

18.6 Discussions on Hedging*… . . . . . 232 … . . . . .

19 American and Exotic Options* … . . . . . 235 … . . . . .

19.1 American Options… . . . . . . . . . . . . . 235 … . . . . . . . . . . . . .

19.1.1 General Analysis on American Options … 235 …

19.1.2 American Option Price Process* … 237 …

19.1.3 Partial Differential Inequality* … . . 239 … . .

19.2 Pricing of Some Exotic Options under the BSM Model*. . . . . . . . . 240 . . . . . . . . .

19.2.1 European Binary Options… . . . . . . . . 240 … . . . . . . . .

19.2.2 American Binary and Barrier Options … . . 241 … . .

19.2.3 Asian Options with Continuous Sampling* . . . . . . . . . . . . 243 . . . . . . . . . . . .

20 Hedging/Pricing Options and Structured Products in Practice* . . . . . . 247 . . . . . .

20.1 Barrier Risk and the Mitigation Methods … . . 247 … . .

20.1.1 Smoothing for European Barrier … 248 …

20.1.2 Smoothing for American Barrier … 250 …

20.2 Correlation Risk….. 251 …..

20.2.1 Sources of Correlation Risk … . . . . . 251 … . . . . .

20.2.2 Correlation Risk Management … . . 252 … . .

20.3 Large Delta Issue … . . . . . . . . . . . . . 253 … . . . . . . . . . . . . .

21 Numerical Method (1): Monte Carlo Simulation ..255 ..

21.1 Monte Carlo Method for Pricing European Options . . . . . . . . . . . . . . 255 . . . . . . . . . . . . . .

21.1.1 Simulation Under the Black–Scholes–Merton Model….. 257 …..

21.2 Generating One-Dimensional Normal Variate… . . . . . 258 … . . . . .

21.2.1 Inverse Sampling… . . . 258 … . . .

21.2.2 Box–Muller Method*… . . . . . . . . . . . . 259 … . . . . . . . . . . . .

21.3 Generating Multi-Dimensional Normal Variates*… . 259 … .

21.3.1 Cholesky Factorization … . . . . . . . . . . 260 … . . . . . . . . . .

21.3.2 Eigenvector Factorization* … . . . . . . 261 … . . . . . .

21.4 Simulation Accuracy Measure* … . . . . . . . . . . . . 261 … . . . . . . . . . . . .

21.5 Variance Reduction Techniques*… . . . . . . . . . . . 262 … . . . . . . . . . . .

21.5.1 Antithetic Sampling ..262 ..

21.5.2 Control Variables … . . 263 … . .

21.5.3 Importance Sampling … . . . . . . . . . . . . 263 … . . . . . . . . . . . .

21.5.4 Stratified Sampling* ..264 ..

21.5.5 Moment Matching … . 265 … .

21.6 Quasi-Monte Carlo* … . . . . . . . . . . 265 … . . . . . . . . . .

21.6.1 Low-Discrepancy Sequences … . . . . 266 … . . . .

21.6.2 Principal Component Method*… . . 268 … . .

21.6.3 Brownian Bridge Method* … . . . . . . 268 … . . . . . .

21.7 Monte Carlo Approach for American Options* … . . . 269 … . . .

21.7.1 Introduction … . . . . . . . . 269 … . . . . . . . .

21.7.2 Least-Squares Method for Lower Bound ..270 ..

21.7.3 Martingale Method for Upper Bound* … . 273 … .

22 Numerical Method (2): Binomial and Trinomial Trees… . 277 … .

22.1 Binomial Tree Method… . . . . . . . . 277 … . . . . . . . .

22.1.1 Tree Construction … . . 277 … . .

22.1.2 Determination of the Parameters … 278 …

22.1.3 European Option Pricing … . . . . . . . . 279 … . . . . . . . .

22.1.4 American Option Pricing … . . . . . . . . 280 … . . . . . . . .

22.1.5 Greeks*… . . . . . . . . . . . . . 282 … . . . . . . . . . . . . .

22.1.6 Accuracy and Stability Analysis* ..282 ..

22.2 Trinomial Tree Method*… . . . . . . 284 … . . . . . .

22.3 Discrete Dividends* … . . . . . . . . . . 285 … . . . . . . . . . .

22.4 Barrier and Path-Dependent Options Pricing Issues* . . . . . . . . . . . . . 286 . . . . . . . . . . . . .

22.4.1 Barrier Options… . . . . . 286 … . . . . .

22.4.2 Other Path-Dependent Options… . . 286 … . .

23 Numerical Method (3): PDE Approach* … . . . . . . . . . 289 … . . . . . . . . .

23.1 Introduction to Finite Difference Method … . 290 … .

23.1.1 Derivatives Approximation … . . . . . . 290 … . . . . . .

23.1.2 Discretization Grid… . 290 … .

23.1.3 Resolution Equations … . . . . . . . . . . . . 292 … . . . . . . . . . . . .

23.1.4 Boundary Conditions … . . . . . . . . . . . . 292 … . . . . . . . . . . . .

23.1.5 Terminal Condition … 293 …

23.2 Finite Difference Schemes … . . . 293 … . . .

23.2.1 Explicit Scheme… . . . . 294 … . . . .

23.2.2 Implicit Scheme … . . . . 294 … . . . .

23.2.3 Crank–Nicolson Scheme and θ-Scheme* . . . . . . . . . . . . . . 295 . . . . . . . . . . . . . .

23.3 Numerical Resolution for Finite Difference Methods* . . . . . . . . . . . 295 . . . . . . . . . . .

23.3.1 Direct Method… . . . . . . 296 … . . . . . .

23.3.2 Iterative Method … . . . 296 … . . .

23.4 Numerical Resolution for American Options* … . . . . 297 … . . . .

23.5 Multi-Dimensional PDE Derivation* … . . . . . . 298 … . . . . . .

23.5.1 Dynamic Hedging Portfolio Approach … . 298 … .

23.5.2 Risk-Neutral Framework Approach… . . . . . 299 … . . . . .

23.6 Alternating Direction Implicit (ADI) Method*… . . . . 300 … . . . .

23.7 ADI Method with Mixed Derivative Terms* … . . . . . . 301 … . . . . . .

23.8 Discrete Dividend* … . . . . . . . . . . . 301 … . . . . . . . . . . .

23.9 Discrete Observation/Sampling* … . . . . . . . . . . . 302 … . . . . . . . . . . .

23.9.1 No-Arbitrage Condition for Discrete Sampling* . . . . . . . 302 . . . . . . .

23.9.2 Discrete Sampling for Backward Pricing Approach . . . 302 . . .

23.10 Accuracy and Consistency Analysis* … . . . . . . 303 … . . . . . .

23.11 Stability and Convergence Analysis* … . . . . . . 304 … . . . . . .

Part III Extensions to Financial Modelling

24 Static Hedging, Variance Swap and Volatility Index* … . . 311 … . .

24.1 Static Hedging for European Style Options ..311 ..

24.2 Variance Swap ….. . 313 ….. .

24.2.1 Valuation of Variance Swap … . . . . . 314 … . . . . .

24.3 Volatility Index* ….315 ….

25 Local and Stochastic Volatility Models… . . . . . . . . . . . 317 … . . . . . . . . . . .

25.1 Local Volatility Model … . . . . . . . . 317 … . . . . . . . .

25.1.1 Local Volatility Calculation by Call Option Prices. . . . . 318 . . . . .

25.1.2 Local Volatility Calculation by Implied Volatilities*… . . . . . . . . . 319 … . . . . . . . . .

25.1.3 Local Volatility Calculation with Discrete Dividends* … . . . . . . . . . 321 … . . . . . . . . .

25.1.4 Practical Implementation … . . . . . . . . 322 … . . . . . . . .

25.2 Stochastic Volatility Models* … 322 …

25.2.1 Heston Model … . . . . . . 323 … . . . . . .

25.2.2 Forward Variance Model … . . . . . . . . 326 … . . . . . . . .

25.2.3 Local-Stochastic Volatility (LSV) Model..328 ..

26 Jump-Diffusion Models*… . . . . . . . . . . . . . 331 … . . . . . . . . . . . . .

26.1 Compound Poisson Process … . . 331 … . .

26.2 Simulating a Poisson Process and Compound Poisson Process….. . . 332 ….. . .

26.3 Stochastic Calculus for Jump-Diffusion Processes … 332 …

26.4 Jump-Diffusion Model for Option Pricing… . 334 … .

26.5 European Call or Put Option Pricing… . . . . . . . 335 … . . . . . . .

26.6 PIDE for European Style Options* … . . . . . . . . 337 … . . . . . . . .

26.6.1 Derivation of PIDE … 337 …

26.6.2 Finite Difference Method for PIDE … . . . . . 338 … . . . . .

26.7 Discussion on Hedging Under Jump-Diffusion Model* . . . . . . . . . . 338 . . . . . . . . . .

27 Interest Rate Term Structure Modelling* … . . . . . . . 341 … . . . . . . .

27.1 Continuous-Time Modelling of Interest Rate… . . . . . . 341 … . . . . . .

27.1.1 Zero Coupon Bond… . 342 … .

27.1.2 Short Rate … . . . . . . . . . . 342 … . . . . . . . . . .

27.1.3 Forward Rate … . . . . . . . 342 … . . . . . . .

27.2 Heath–Jarrow–Morton Framework … . . . . . . . . 343 … . . . . . . . .

27.2.1 No-Arbitrage Short Rate Model… . 345 … .

27.2.2 Markovian Characterization for Short Rate Models . . . 345 . . .

27.3 Short Rate Models … . . . . . . . . . . . . 348 … . . . . . . . . . . . .

27.3.1 Hull–White One-Factor Model… . . 348 … . .

27.3.2 Two-Factor LGM (Linear Gaussian Markov) . . . . . . . . . . 349 . . . . . . . . . .

27.3.3 CIR (Cox-Ingersoll-Ross) One-Factor Model . . . . . . . . . . 351 . . . . . . . . . .

27.3.4 Affine-Yield Models*… . . . . . . . . . . . . 351 … . . . . . . . . . . . .

27.4 BGM Model ….. . . . . 352 ….. . . . .

27.4.1 Factor Reduction … . . . 354 … . . .

27.4.2 Stochastic Volatility… 354 …

28 Credit Modelling* ….. . . . . . 357 ….. . . . . .

28.1 Credit Modelling ….357 ….

28.1.1 Structural Model … . . . 357 … . . .

28.1.2 Intensity Model … . . . . 358 … . . . .

28.2 CDS (Credit Default Swap) … . . 360 … . .

28.3 Credit Triangle ….. . 361 ….. .

28.4 Pricing and Hedging of Multi-Name Credit Derivatives* . . . . . . . . 361 . . . . . . . .

28.4.1 Copula ….361 ….

28.4.2 One-Factor Gaussian Copula Model … . . . . 362 … . . . .

28.4.3 Multi-Name Credit Derivatives Pricing … . 364 … .

28.4.4 Hedging Multi-Name Credit Derivatives* . . . . . . . . . . . . . . 367 . . . . . . . . . . . . . .

28.5 Counterparty Risk Measures … . 368 … .

28.5.1 PFE (Potential Future Exposure)… 368 …

28.5.2 VaR (Value-at-Risk) ..369 ..

28.5.3 Close-Out Risk … . . . . . 369 … . . . . .

28.5.4 EPE (Expected Positive Exposure) … . . . . . 369 … . . . . .

28.5.5 CVA (Credit Value Adjustment) … 369 …

28.5.6 Wrong-Way Risk … . . 370 … . .

28.5.7 Basel Risk Weight Function* … . . . 370 … . . .

29 Commodity Modelling* ….373 ….

29.1 Spot Model ….. . . . . . 374 ….. . . . . .

29.2 Futures Model ….. . . 374 ….. . .

29.3 Multi-Factor Models* … . . . . . . . . 376 … . . . . . . . .

Part IV Structured Products and Solutions

30 Structured Products: Structuring Topics … . . . . . . . . 381 … . . . . . . . .

30.1 Building Blocks ….. 381 …..

30.2 Underliers ….. . . . . . . 382 ….. . . . . . .

30.3 Wrapper or Instrument… . . . . . . . . 382 … . . . . . . . .

30.4 Payoff Structuring Techniques ..384 ..

30.5 Investment Leveraging… . . . . . . . . 386 … . . . . . . . .

30.6 Pricing and Hedging … . . . . . . . . . . 387 … . . . . . . . . . .

30.7 Funding Management… . . . . . . . . . 388 … . . . . . . . . .

30.8 Back-Testing ….. . . . 389 ….. . . .

31 Popular Option Based Structured Products … . . . . . 391 … . . . . .

31.1 Equity Structured Products … . . . 391 … . . .

31.1.1 Equity Linked Note (ELN) … . . . . . . 392 … . . . . . .

31.1.2 Fixed Coupon Callable Note (FCN) … . . . . 392 … . . . .

31.1.3 Daily Range Accrual Callable Note (DAC) . . . . . . . . . . . . 393 . . . . . . . . . . . .

31.1.4 Phoenix Callable Note … . . . . . . . . . . . 394 … . . . . . . . . . . .

31.1.5 Snowball Structure … . 394 … .

31.1.6 Issuer Callable Structure… . . . . . . . . . 396 … . . . . . . . . .

31.1.7 Shark-Fin … . . . . . . . . . . . 396 … . . . . . . . . . . .

31.1.8 Accumulator … . . . . . . . 397 … . . . . . . .

31.1.9 Decumulator … . . . . . . . 399 … . . . . . . .

31.1.10 Bonus Enhanced Note (BEN) … . . . 399 … . . .

31.1.11 Twin-Win … . . . . . . . . . . . 400 … . . . . . . . . . . .

31.1.12 Tracker+ Note… . . . . . . 401 … . . . . . .

31.1.13 Booster Note … . . . . . . . 402 … . . . . . . .

31.1.14 Wedding Cake… . . . . . . 402 … . . . . . .

31.1.15 Stellar Note… . . . . . . . . . 403 … . . . . . . . . .

31.1.16 CBBC: Callable Bull/Bear Contract … . . . . 403 … . . . .

31.1.17 Cliquet Option … . . . . . 404 … . . . . .

31.1.18 Himalaya … . . . . . . . . . . . 405 … . . . . . . . . . . .

31.2 Fixed-Income Structured Products … . . . . . . . . . 405 … . . . . . . . . .

31.2.1 Range Accrual … . . . . . 405 … . . . . .

31.2.2 Inverse Floater … . . . . . 407 … . . . . .

31.2.3 Zero Coupon Callable Note … . . . . . 407 … . . . . .

31.2.4 Reverse Convertible Note on Rate … . . . . . . 408 … . . . . . .

31.2.5 Yield Spread Structure … . . . . . . . . . . . 408 … . . . . . . . . . . .

31.3 Foreign-Exchange Structured Products … . . . . 409 … . . . .

31.3.1 Dual Currency Investment (DCI) ..409 ..

31.3.2 FX Accumulator … . . . 410 … . . .

31.3.3 Target Redemption Forward (TARF) … . . . 410 … . . .

31.4 Commodities Structured Products … . . . . . . . . . 413 … . . . . . . . . .

31.5 Hybrid Structured Products… . . . 413 … . . .

31.5.1 Best-of Profile … . . . . . . 414 … . . . . . .

31.5.2 Callable Range Accrual … . . . . . . . . . 414 … . . . . . . . . .

31.5.3 Gap Note* … . . . . . . . . . . 415 … . . . . . . . . . .

31.6 Fund Linked Structured Products … . . . . . . . . . . 415 … . . . . . . . . . .

31.6.1 Bullish Note … . . . . . . . . 416 … . . . . . . . .

31.6.2 Bullish Coupon Note … . . . . . . . . . . . . 417 … . . . . . . . . . . . .

31.7 Credit Linked Structured Products … . . . . . . . . . 418 … . . . . . . . . .

31.7.1 Credit Linked Note (CLN) … . . . . . . 418 … . . . . . .

31.7.2 CLN on Credit Index … . . . . . . . . . . . . 418 … . . . . . . . . . . . .

31.8 Equity Derivatives for Corporates… . . . . . . . . . . 418 … . . . . . . . . . .

31.8.1 Financing … . . . . . . . . . . . 419 … . . . . . . . . . . .

31.8.2 Shares Buy-Back and Disposal… . . 423 … . .

31.8.3 Greenshoe (Over-Allotment) Option* … . . 424 … . .

32 Structured Products with Dynamic Asset Allocation and Systematic Strategies … . . . . . . . . . . . . 427 … . . . . . . . . . . . .

32.1 Principal Protection with Dynamic Asset Allocation . . . . . . . . . . . . . 427 . . . . . . . . . . . . .

32.1.1 Volatility Target … . . . . 428 … . . . .

32.1.2 Actively Managed Portfolio with Protection . . . . . . . . . . . 429 . . . . . . . . . . .

32.1.3 Gap Risk Based Asset Allocation: CPPI and TIPP . . . . 429 . . . .

32.2 Structured Products with Systematic Strategies … . . . 432 … . . .

32.2.1 Introduction to Factor Models… . . . 433 … . . .

32.2.2 Portfolio Approach … 437 …

A Some Elements in Probability Theory, Linear Algebra and Analysis ….. . . . . 441 ….. . . . .

A.1 Multivariate Random Variable ..441 ..

A.2 Multivariate Normal Distribution … . . . . . . . . . . 442 … . . . . . . . . . .

A.3 Unbiased Estimators … . . . . . . . . . . 444 … . . . . . . . . . .

A.4 Multiple Least-Squares Regression … . . . . . . . . 444 … . . . . . . . .

A.5 Plackett’s Identity … . . . . . . . . . . . . . 445 … . . . . . . . . . . . . .

A.6 Dirac Delta Function… . . . . . . . . . . 446 … . . . . . . . . . .

A.7 Box–Muller Method for Uniform Variables ..446 ..

A.8 Approximation of Distribution Function for Normal Variables ….. 447 …..

A.9 Inversion of Characteristic Functions … . . . . . . 448 … . . . . . .

B Closed-Form Solutions to Some Options… . . . . . . . . . 451 … . . . . . . . . .

B.1 Vanilla Options on Stocks … . . . . 451 … . . . .

B.2 Vanilla Options on Foreign Exchange Rate… 452 …

B.3 Vanilla Options on Futures … . . . 452 … . . .

B.4 Barrier Options ….. . 453 ….. .

C Sobol Method for Low-Discrepancy Sequence … . . 455 … . .

C.1 Sobol Sequence Generation … . . 455 … . .

C.2 Simplification of Sobol Sequence Generation with Gray Code . . 456 . .

C.3 Direction Numbers… . . . . . . . . . . . . 456 … . . . . . . . . . . . .

C.4 Comments on Uniformity … . . . . 458 … . . . .

C.5 Comments on the Rationale of the Method … 458 …

D Some Results of Portfolio Theory … . . . 461 … . . .

E Representation of CIR Process as a Squared Bessel Process . . . . . . . . . . 463 . . . . . . . . . .

E.1 Squared Bessel Process … . . . . . . . 463 … . . . . . . .

E.2 Representation of CIR Process ..464 ..

References….. . . . . . . . . . . . . 467 ….. . . . . . . . . . . . .

Index ….. . . . . 473 ….. . . . .

This book is US$10
To get free sample pages OR Buy this book


Share this Book!

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.