Foundations of Quantitative Finance Book V: General Measure and Integration Theory by Robert R. Reitano

By

Foundations of Quantitative Finance Book V: General Measure and Integration Theory

Robert R. Reitano

Foundations of Quantitative Finance

Contents

Preface xi

Author xiii

Introduction xv

1 Measure Spaces 1

1.1 Lebesgue and Borel Spaces on R . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Starting Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Lebesgue Measure Space . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Borel Measure Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 General Extension Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Measure Space Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Finite Products of Measure Spaces . . . . . . . . . . . . . . . . . . . 11

1.3.2 Borel Measures on Rn . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.3 Infinite Products of Probability Spaces . . . . . . . . . . . . . . . . . 14

1.4 Continuity of Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Measurable Functions 17

2.1 Properties of Measurable Functions . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Limits of Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Results on Function Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Approximating σ(X)-Measurable Functions . . . . . . . . . . . . . . . . . . 26

2.5 Monotone Class Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Monotone Class Theorem . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Functional Monotone Class Theorem . . . . . . . . . . . . . . . . . . 34

3 General Integration Theory 36

3.1 Integrating Simple Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Integrating Nonnegative Measurable Functions . . . . . . . . . . . . . . . . 41

3.2.1 Fatou’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Lebesgue’s Monotone Convergence Theorem . . . . . . . . . . . . . . 49

3.2.3 Properties of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.4 Product Space Measures Revisited . . . . . . . . . . . . . . . . . . . 55

3.3 Integrating General Measurable Functions . . . . . . . . . . . . . . . . . . 57

3.3.1 Properties of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Beppo Levi’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.3 Lebesgue’s Dominated Convergence Theorem . . . . . . . . . . . . . 63

3.3.4 Bounded Convergence Theorem . . . . . . . . . . . . . . . . . . . . . 66

3.3.5 Uniform Integrability Convergence Theorem . . . . . . . . . . . . . . 67

3.4 Leibniz Integral Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.1 Riemann Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.2 Lebesgue/Lebesgue-Stieltjes Integrals . . . . . . . . . . . . . . . . . 74

3.5 Lebesgue-Stieltjes vs. Riemann-Stieltjes Integrals . . . . . . . . . . . . . . . 76

3.5.1 Lebesgue-Stieltjes Integrals on R . . . . . . . . . . . . . . . . . . . . 76

3.5.2 Lebesgue-Stieltjes Integrals on Rn . . . . . . . . . . . . . . . . . . . 79

4 Change of Variables 84

4.1 Change of Measure: A Special Case . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1 Measures Defined by Integrals . . . . . . . . . . . . . . . . . . . . . . 85

4.1.2 Integrals and Change of Measure . . . . . . . . . . . . . . . . . . . . 89

4.2 Transformations and Change of Measure . . . . . . . . . . . . . . . . . . . 92

4.2.1 Measures Induced by Transformations . . . . . . . . . . . . . . . . . 92

4.2.2 Change of Variables under Transformations . . . . . . . . . . . . . . 95

4.3 Special Cases of Change of Variables . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Lebesgue Integrals on R . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.2 Linear Transformations on Rn . . . . . . . . . . . . . . . . . . . . . 102

4.3.3 Differentiable Transformations on Rn . . . . . . . . . . . . . . . . . . 106

5 Integrals in Product Spaces 117

5.1 Product Space Sigma Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1.1 Sigma Algebra Constructions . . . . . . . . . . . . . . . . . . . . . . 117

5.1.2 Implications for Chapter Results . . . . . . . . . . . . . . . . . . . . 120

5.2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2.1 Introduction to Fubini/Tonelli Theorems . . . . . . . . . . . . . . . 123

5.2.2 Integrals of Characteristic Functions . . . . . . . . . . . . . . . . . . 123

5.3 Fubini’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.1 Generalizing Fubini’s Theorem . . . . . . . . . . . . . . . . . . . . . 130

5.3.2 Fubini’s Theorem on σ′ (X × Y ) . . . . . . . . . . . . . . . . . . . . 131

5.4 Tonelli’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4.1 Tonelli’s Theorem on σ′ (X × Y ) . . . . . . . . . . . . . . . . . . . . 135

5.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Two Applications of Fubini/Tonelli 140

6.1 Lebesgue-Stieltjes Integration by Parts . . . . . . . . . . . . . . . . . . . . 140

6.1.1 Functions of Bounded Variation . . . . . . . . . . . . . . . . . . . . . 141

6.1.2 Lebesgue-Stieltjes integration by parts . . . . . . . . . . . . . . . . . 145

6.2 Convolution of Integrable Functions . . . . . . . . . . . . . . . . . . . . . . 147

7 The Fourier Transform 152

7.1 Integration of Complex-Valued Functions . . . . . . . . . . . . . . . . . . . 152

7.2 Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.3 Properties of Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . 158

7.4 Fourier-Stieltjes Inversion of φF (t) . . . . . . . . . . . . . . . . . . . . . . . 165

7.5 Fourier Inversion of Integrable φF (t) . . . . . . . . . . . . . . . . . . . . . . 170

7.5.1 Integrability vs. Decay at ±∞ . . . . . . . . . . . . . . . . . . . . . 170

7.5.2 Fourier Inversion: From Integrable φF (t) to f (x) . . . . . . . . . . . 172

7.6 Continuity Theorem for Fourier Transforms . . . . . . . . . . . . . . . . . . 174

8 General Measure Relationships 180

8.1 Decomposition of Borel Measures on (R, B(R), m) . . . . . . . . . . . . . . 180

8.2 Decomposition of σ-Finite Measures . . . . . . . . . . . . . . . . . . . . . . 185

8.2.1 Signed Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.2.2 The Hahn and Jordan Decompositions . . . . . . . . . . . . . . . . . 188

8.2.3 The Radon-Nikod´ym Theorem . . . . . . . . . . . . . . . . . . . . . 191

8.2.4 The Lebesgue Decomposition Theorem . . . . . . . . . . . . . . . . . 200

9 The Lp Spaces 204

9.1 Introduction to Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 204

9.2 The Lp(X)-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

9.3 Approximating Lp(X)-Functions . . . . . . . . . . . . . . . . . . . . . . . . 218

9.4 Bounded Linear Functionals on Lp(X)-Spaces . . . . . . . . . . . . . . . . 219

9.5 Hilbert Space: A Special Case of p = 2 . . . . . . . . . . . . . . . . . . . . 225

References 231

Index 235

This book is US$10
To get free sample pages OR Buy this book


Share this Book!

Leave a Comment


This site uses Akismet to reduce spam. Learn how your comment data is processed.