Math for Business and Economics: Compendium of Essential Formulas, Third Edition by Franz W. Peren

By

Math for Business and Economics: Compendium of Essential Formulas, Third Edition

Franz W. Peren

Math for Business and Economics_ Compendium of Essential Formulas

Contents

List of Abbreviations XXI

1 Mathematical Signs and Symbols 1

1.1 Pragmatic Signs … . 1

1.2 General Arithmetic Relations and Links . . . . . . . . . . . . 1

1.3 Sets of Numbers … . 2

1.4 Special Numbers and Links .. . . . . . . 3

1.5 Limit … . . . . . . . . . . . 3

1.6 Exponential Functions, Logarithm .. 4

1.7 Trigonometric Functions, Hyperbolic Functions . . . . . 4

1.8 Vectors, Matrices … 5

1.9 Sets … . . . . . . . . . . . . 6

1.10 Relations . . . . . . . … 7

1.11 Functions … . . . . . . . 7

1.12 Order Structures … . 7

1.13 SI Multiplying and Dividing Prefixes . . . . . . . . . . . . . . . 8

1.14 Greek Alphabet … . . 9

2 Logic 11

2.1 Mathematical Logic .. . . . . . . . . . . . . 11

2.2 Propositional Logic ..11

2.2.1 Propositional Variable .. . . . 11

2.2.2 Truth Tables .. . . . . . . . . . . . 12

3 Arithmetic 15

3.1 Sets … . . . . . . . . . . . . 15

3.1.1 General … . . 15

3.1.2 Set Relations .. . . . . . . . . . . . 16

3.1.3 Set Operations .. . . . . . . . . . 17

3.1.4 Relations, Laws, Rules of Calculation for Sets 19

3.1.5 Intervals … . 21

3.1.6 Numeral Systems .. . . . . . . . 22

3.1.6.1 Decimal System (Decadic System) 23

3.1.6.2 Dual System (Binary System) . . . . 23

3.1.6.3 Roman Numeral System . . . . . . . . . 24

3.2 Elementary Calculus .. . . . . . . . . . . . 24

3.2.1 Elementary Foundations .. 24

3.2.1.1 Axioms .. . . . . . . . 25

3.2.1.2 Factorisation .. . . . 25

3.2.1.3 Relations .. . . . . . . 26

3.2.1.4 Absolute Value, Signum . . . . . . . . . 26

3.2.1.5 Fractions .. . . . . . . 27

3.2.1.6 Polynomial Division . . . . . . . . . . . . . 27

3.2.1.7 Horner’s Scheme (Horner’s Method) 29

3.2.2 Conversions of Terms .. . . . 30

3.2.2.1 Binomial Formulas . . . . . . . . . . . . . . 30

3.2.2.2 Binomial Theorem . . . . . . . . . . . . . . 31

3.2.2.3 General Binomial Theorem for Natural

Exponents .. . 31

3.2.2.4 General Binomial Theorem for Real

Exponents .. . . . . . 31

3.2.2.5 Polynomial Terms . . . . . . . . . . . . . . . 32

3.2.3 Summation and Product Notation . . . . . . . . . 32

3.2.3.1 Summation Notation . . . . . . . . . . . . 32

3.2.3.2 Product Notation . . . . . . . . . . . . . . . 33

3.2.4 Powers, Roots .. . . . . . . . . . . 34

3.2.5 Logarithms ..37

3.2.6 Factorial … 39

3.2.7 Binomial Coefficient .. . . . . . 40

3.3 Sequences … . . . . . . 41

3.3.1 Definition … 41

3.3.2 Limit of a Sequence .. . . . . 44

3.3.3 Arithmetic and Geometric Sequences . . . . . 46

3.4 Series … . . . . . . . . . . . 47

3.4.1 Definition … 47

3.4.2 Arithmetic and Geometric Series . . . . . . . . . . 47

4 Algebra 51

4.1 Fundamental Terms..51

4.2 Linear Equations … . 53

4.2.1 Linear Equations with One Variable . . . . . . . 53

4.2.2 Linear Inequations with One Variable . . . . . 56

4.2.3 Linear Equations with Multiple Variables . . . 56

4.2.4 Systems of Linear Equations . . . . . . . . . . . . . 57

4.2.5 Linear Inequations with Multiple Variables . 61

4.3 Non-linear Equations .. . . . . . . . . . . . 62

4.3.1 Quadratic Equations with One Variable . . . . 62

4.3.2 Cubic Equations with One Variable . . . . . . . 65

4.3.3 Biquadratic Equations .. . . . 67

4.3.4 Equations of the nth Degree . . . . . . . . . . . . . . 68

4.3.5 Radical Equations .. . . . . . . 69

4.4 Transcendental Equations .. . . . . . . . 71

4.4.1 Exponential Equations .. . . 71

4.4.2 Logarithmic Equations .. . . 73

4.5 Approximation Methods .. . . . . . . . . . 75

4.5.1 Regula falsi (Secant Method) . . . . . . . . . . . . 75

4.5.2 Newton’s Method (Tangent Method) . . . . . . . 77

4.5.3 General Approximation Method (Fixed-point

Iteration) … 80

5 Linear Algebra 87

5.1 Fundamental Terms..87

5.1.1 Matrix … . . . 87

5.1.2 Equality/Inequality of Matrices . . . . . . . . . . . 88

5.1.3 Transposed Matrix .. . . . . . . 89

5.1.4 Vector … . . . 89

5.1.5 Special Matrices and Vectors . . . . . . . . . . . . 92

5.2 Operations with Matrices .. . . . . . . . . 94

5.2.1 Addition of Matrices .. . . . . . 94

5.2.2 Multiplication of Matrices .. . 96

5.2.2.1 Multiplication of a Matrix with a

Scalar .. . . . . . . . . . 96

5.2.2.2 The Scalar Product of Two Vectors

.. . . . . . . . . . . 98

5.2.2.3 Multiplication of a Matrix by a Column

Vector .. . . . . 100

5.2.2.4 Multiplication of a Row Vector by

a Matrix .. . . . . . . . 102

5.2.2.5 Multiplication of Two Matrices . . . . 103

5.3 The Inverse of a Matrix .. . . . . . . . . . 107

5.3.1 Introduction .. . . . . . . . . . . . . 107

5.3.2 Determination of the Inverse with the Usage

of the Gaussian Elimination Method . . . . . . 109

5.4 The Rank of a Matrix .. . . . . . . . . . . . 113

5.4.1 Definition … 113

5.4.2 Determination of the Rank of a Matrix . . . . . 113

5.5 The Determinant of a Matrix .. . . . . . 117

5.5.1 Definition … 117

5.5.2 Calculation of Determinants . . . . . . . . . . . . . . 118

5.5.3 Characteristics of Determinants . . . . . . . . . . . 124

5.6 The Adjoint of a Matrix .. . . . . . . . . . . 125

5.6.1 Definition … 125

5.6.2 Determination of the Inverse with the Usage

of the Adjoint .. . . . . . . . . . . . 127

6 Combinatorics 129

6.1 Introduction … . . . . . . 129

6.2 Permutations … . . . . 133

6.3 Variations … . . . . . . . 135

6.4 Combinations … . . . 136

7 Financial Mathematics 141

7.1 Calculation of Interest .. . . . . . . . . . . 141

7.1.1 Fundamental Terms .. . . . . . 141

7.1.2 Annual Interest .. . . . . . . . . . 142

7.1.2.1 Simple Interest Calculation . . . . . . . 142

7.1.2.2 Compound Computation of Interest

.. . . . . . . . . . . . 144

7.1.2.3 Composite Interest . . . . . . . . . . . . . 146

7.1.3 Interest During the Period . . . . . . . . . . . . . . . 158

7.1.3.1 Simple Interest Calculation (linear) 159

7.1.3.2 Simple Interest Using the Nominal

Annual Interest Rate . . . . . . . . . 159

7.1.3.3 Compound Interest (exponential) . 160

7.1.3.4 Interest with Compound Interest

Using a Conforming Annual Interest

Rate .. . . . . . . 161

7.1.3.5 Mixed Interest .. . 162

7.1.3.6 Steady Interest Rate . . . . . . . . . . . . 163

7.2 Annual Percentage Rate .. . . . . . . . . 168

7.3 Depreciation … . . . . 173

7.3.1 Time Depreciation .. . . . . . . 173

7.3.1.1 Linear Depreciation . . . . . . . . . . . . . 173

7.3.1.2 Arithmetic-Degressive Depreciation 174

7.3.1.3 Geometric-Degressive Depreciation

.. . . . . . . . . . . . 176

7.3.2 Units of Production Depreciation . . . . . . . . . 178

7.3.3 Extraordinary Depreciation . . . . . . . . . . . . . . 179

7.4 Annuity Calculation ..180

7.4.1 Fundamental Terms .. . . . . . 180

7.4.2 Finite, Regular Annuity .. . . 183

7.4.2.1 Annual Annuity with Annual Interest 183

7.4.2.2 Annual Annuity with Sub-Annual

Interest .. . . . . . . . 187

7.4.2.3 Sub-Annual Annuity with Annual

Interest .. . . . . . . . 190

7.4.2.4 Sub-Annual Annuity with Sub-Annual

Interest .. . . . . . . . 194

7.4.3 Finite, Variable Annuity .. . . 213

7.4.3.1 Irregular Annuity . . . . . . . . . . . . . . . 213

7.4.3.2 Arithmetic Progressive Annuity . . . 220

7.4.3.3 Geometric Progressive Annuity . . . 231

7.4.4 Perpetuity ..234

7.5 Sinking Fund Calculation .. . . . . . . . . 235

7.5.1 Fundamental Terms .. . . . . . 236

7.5.2 Annuity Repayment .. . . . . . 238

7.5.3 Repayment by Instalments . . . . . . . . . . . . . . 241

7.5.4 Repayment with Premium . . . . . . . . . . . . . . . 243

7.5.4.1 Annuity Repayment with Premium 243

7.5.4.2 Repayment of an Instalment Debt

with Premium .. . . 248

7.5.5 Repayment with Discount (Disagio) . . . . . . . 249

7.5.5.1 Annuity Repayment with Discount

when Immediately Booked as Interest

Expense .. . . . 251

7.5.5.2 Annuity Repayment with Discount

when a Disagio is Included in Prepaid

Expenses .. . 253

7.5.5.3 Instalment Repayment with Discount

when Immediately Booked

as Interest Expense . . . . . . . . . . . . . 253

7.5.5.4 Instalment Repayment with Discount

when a Disagio is Included

in Prepaid Expenses . . . . . . . . . . . . 254

7.5.6 Grace Periods .. . . . . . . . . . 255

7.5.7 Rounded Annuities .. . . . . . 257

7.5.7.1 Percentage Annuity . . . . . . . . . . . . . 257

7.5.7.2 Repayment of Bonds . . . . . . . . . . . 260

7.5.8 Repayment During the Year . . . . . . . . . . . . . . 266

7.5.8.1 Annuity Repayment During the Year 266

7.5.8.2 Repayment by Instalments During

the Year .. . . . . . . . 274

7.6 Investment Calculation .. . . . . . . . . . . 279

7.6.1 Fundamental Terms .. . . . . . 280

7.6.2 Fundamentals of Financial Mathematics . . . 283

7.6.3 Methods of Static Investment Calculation . . 286

7.6.4 Methods of Dynamic Investment Calculation

… . . . . . 286

7.6.4.1 Net Present Value Method

(Net Present Value, Amount of

Capital, Final Asset Value) . . . . . . . 287

7.6.4.2 Annuity Method .. 290

7.6.4.3 Internal Rate of Return Method . . 293

8 Optimisation of Linear Models 297

8.1 Lagrange Method … 297

8.1.1 Introduction .. . . . . . . . . . . . . 297

8.1.2 Formation of the Lagrange Function . . . . . . . 297

8.1.3 Determination of the Solution . . . . . . . . . . . . . 298

8.1.4 Interpretation of λ .. . . . . . . . 301

8.1.5 Identification of the Type of Optimum . . . . . . 302

8.2 Linear Optimisation ..313

8.2.1 Introduction .. . . . . . . . . . . . . 313

8.2.2 The Linear Programming Approach . . . . . . . 313

8.2.3 Graphical Solution .. . . . . . . 314

8.2.4 Primal Simplex Algorithm .. 317

8.2.5 Simplex Tableau (Basic Structure) . . . . . . . . . 318

8.2.6 Dual Simplex Algorithm .. . . 324

9 Functions 335

9.1 Introduction … . . . . . . 335

9.1.1 Composition of Functions . . . . . . . . . . . . . . . 339

9.1.2 Inverse Function .. . . . . . . . 341

9.2 Classification of Functions .. . . . . . . 343

9.2.1 Rational Functions .. . . . . . 344

9.2.1.1 Polynomial Functions . . . . . . . . . . . 344

9.2.1.2 Broken Rational Functions . . . . . . . 344

9.2.2 Non-rational Functions .. . . 348

9.2.2.1 Power Functions .. 348

9.2.2.2 Root Function .. . 351

9.2.2.3 Transcendental Functions . . . . . . . . 352

9.2.2.3.1 Exponential Functions . 352

9.2.2.3.2 Logarithmic Functions . . 358

9.2.2.4 Trigonometric Functions (Angle Functions/

Circular Functions) . . . . . . . . . 364

9.3 Characteristics of Real Functions .. 392

9.3.1 Boundedness .. . . . . . . . . . . 392

9.3.2 Symmetry ..394

9.3.2.1 Axial Symmetry .. 394

9.3.2.2 Point Symmetry .. 396

9.3.3 Transformations .. . . . . . . . . 399

9.3.3.1 Vertex Form .. . . . 401

9.3.4 Continuity ..404

9.3.5 Infinite Discontinuities .. . . . 404

9.3.6 Removable Discontinuities . . . . . . . . . . . . . . . 406

9.3.7 Jump Discontinuities .. . . . . 407

9.3.8 Homogeneity .. . . . . . . . . . . 408

9.3.9 Periodicity ..409

9.3.10 Zeros … . . . 409

9.3.11 Local Extremes .. . . . . . . . . 410

9.3.12 Monotonicity .. . . . . . . . . . . . 411

9.3.13 Concavity and Convexity | Inflection Points . 412

9.3.14 Asymptotes .. . . . . . . . . . . . . 414

9.3.14.1 Horizontal Asymptotes . . . . . . . . . . 415

9.3.14.2 Vertical Asymptote . . . . . . . . . . . . . 417

9.3.14.3 Oblique Asymptote . . . . . . . . . . . . . 418

9.3.14.4 Asymptotic Curve . . . . . . . . . . . . . . . 419

9.3.15 Tangent Lines to a Curve .. 420

9.3.16 Normal Lines to a Curve .. 421

9.4 Exercises … . . . . . . . . 422

10 Differential Calculus 427

10.1 Differentiation of Functions with One Independent

Variable … . . . . . . . . . 427

10.1.1 General … . . 427

10.1.2 First Derivative of Elementary Functions . . . 430

10.1.3 Derivation Rules .. . . . . . . . 432

10.1.4 Higher Derivations .. . . . . . . 434

10.1.5 Differentiation of Functions with Parameters

… . . . . . 435

10.1.6 Curve Sketching .. . . . . . . . 435

10.2 Differentiation of Functions with More Than One Independent

Variable ..445

10.2.1 Partial Derivatives (1st Order) . . . . . . . . . . . . . 445

10.2.2 Partial Derivatives (2nd Order) . . . . . . . . . . . . 448

10.2.3 Local Extrema of the Function f = f (x, y) . . 450

10.2.3.1 Relative Extrema without Constraint

of the Function f = f (x, y) . . . . . . . 450

10.2.3.2 Relative Extrema with m Constraints

of the Function f = f (x1, . . . , xn)

with m < n .. . . . . . 459

10.2.4 Differentials of the Function f = f (x1, …, xn) 463

10.3 Theorems of Differentiable Functions . . . . . . . . . . . . . 465

10.3.1 Mean Value Theorem for Differential Calculus

… . . . 465

10.3.2 Generalized Mean Value Theorem for Differential

Calculus .. . . . . . . . 466

10.3.3 Rolle’s Theorem .. . . . . . . . . 466

10.3.4 L’Hospital’s Rule .. . . . . . . . . 467

10.3.5 Bounds Theorem for Differential Calculus . . 468

11 Integral Calculus 469

11.1 Introduction … . . . . . . 469

11.2 The Indefinite Integral .. . . . . . . . . . . . 470

11.2.1 Definition/Determining the Antiderivative . . . 470

11.2.2 Elementary Calculation Rules for the Indefinite

Integral .. . . . . . . . . . . . . 473

11.3 The Definite Integral .. . . . . . . . . . . . . 474

11.3.1 Introduction .. . . . . . . . . . . . . 474

11.3.2 Relationship between the Definite and the

Indefinite Integral .. . . . . . . . 478

11.3.3 Special Techniques of Integration . . . . . . . . . 483

11.3.3.1 Partial Integration . . . . . . . . . . . . . . 483

11.3.3.2 Integration by Substitution . . . . . . . 485

11.4 Multiple Integrals … . 486

11.5 Integral Calculus and Economic Problems . . . . . . . . . 487

11.5.1 Cost Functions .. . . . . . . . . . 487

11.5.2 Revenue Function (= Sales Function) . . . . . . 489

11.5.3 Profit Functions .. . . . . . . . . . 490

12 Elasticities 495

12.1 Definition of Elasticity .. . . . . . . . . . . . 495

12.2 Arc Elasticity … . . . . 496

12.3 Point Elasticity … . . . 501

12.4 Price Elasticity of Demand εxp .. . . . 504

12.5 Cross Elasticity of Demand εxA pB .. . 509

12.6 Income Elasticity of Demand εxy .. . . 511

13 Economic Functions 513

13.1 Supply Function … . 513

13.2 Demand Function / Inverse Demand Function . . . . . . 515

13.3 Market Equilibrium ..517

13.4 Buyer’s Market and Seller’s Market . . . . . . . . . . . . . . . 518

13.5 Supply Gap … . . . . . 519

13.6 Demand Gap … . . . . 519

13.7 Revenue Function … 521

13.8 Cost Functions … . . 527

13.9 Neoclassical Cost Function .. . . . . . . 535

13.10 Cost Function According to the Law of Diminishing

Returns … . . . . . . . . . 543

13.11 Direct Costs versus Indirect Costs .. 556

13.11.1 One-Dimensional Cost Allocation Principles 559

13.11.2 Multi-Dimensional Cost Allocation Principles 561

13.12 Profit Function … . . . 564

14 The Peren Theorem

The Mathematical Frame in Which We Live 573

A Financial Mathematical Factors 581

B Bibliography 627

Index 635

This book is US$10
To get free sample pages OR Buy this book


Share this Book!

Leave a Comment


This site uses Akismet to reduce spam. Learn how your comment data is processed.