Cure Models: Methods, Applications, and Implementation by Yingwei Peng, Binbing Yu

By

Cure Models: Methods, Applications, and Implementation

Yingwei Peng, Binbing Yu

Cure Models_ Methods, Applications, and Implementation

Contents

Preface xiii

Glossary xv

1 Introduction 1

1.1 A Brief Review of Cure Models . . . . . . . . . . . . . . . . . 1

1.1.1 Time-to-Event Data and Cured Subjects . . . . . . . . 1

1.1.2 Survival Models and Cure Models . . . . . . . . . . . 2

1.2 Aim and Scope of the Book . . . . . . . . . . . . . . . . . . . 4

2 The Parametric Cure Model 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Parametric Mixture Cure Models . . . . . . . . . . . . . . . 7

2.2.1 Parametric Incidence Submodel . . . . . . . . . . . . . 8

2.2.2 Parametric Latency Submodel . . . . . . . . . . . . . 9

2.2.2.1 Parametric PH Latency Submodel . . . . . . 10

2.2.2.2 Parametric AFT Latency Submodel . . . . . 11

2.2.2.3 Other Parametric Latency Submodels . . . . 12

2.3 Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Direct Maximization of Observed Likelihood Function 13

2.3.2 Estimation via EM Algorithm . . . . . . . . . . . . . . 14

2.4 Non-Mixture Cure Models . . . . . . . . . . . . . . . . . . . 16

2.4.1 Proportional Hazards Cure Model . . . . . . . . . . . 16

2.4.2 Cure Models Based on Tumor Activation Scheme . . . 19

2.4.3 Cure Models Based on Frailty Models . . . . . . . . . 20

2.4.4 Cure Models Based on Box-Cox Transformation . . . 21

2.5 Model Assessment . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Choosing an Appropriate Parametric Distribution . . 23

2.5.2 Mixture vs Non-Mixture Cure Models . . . . . . . . . 24

2.5.3 Goodness of Fit by Residuals . . . . . . . . . . . . . . 25

2.6 Software and Applications . . . . . . . . . . . . . . . . . . . 26

2.6.1 R Package gfcure . . . . . . . . . . . . . . . . . . . . . 27

2.6.2 R Package mixcure . . . . . . . . . . . . . . . . . . . . 31

2.6.3 R Package flexsurvcure . . . . . . . . . . . . . . . . . . 35

2.6.4 SAS Macro PSPMCM . . . . . . . . . . . . . . . . . . 37

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 The Semiparametric and Nonparametric Cure Models 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Semiparametric Mixture Cure Models . . . . . . . . . . . . . 41

3.2.1 Semiparametric PH Latency Submodel . . . . . . . . . 42

3.2.1.1 Restrictions on the Upper Tail of the Baseline

Distribution . . . . . . . . . . . . . . . . . . 43

3.2.1.2 Time-Dependent Covariates in the Latency

Submodel . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Semiparametric AFT Latency Submodel . . . . . . . . 44

3.2.2.1 Linear Rank Method . . . . . . . . . . . . . 45

3.2.2.2 M-Estimation Method . . . . . . . . . . . . . 46

3.2.2.3 Kernel Smoothing Method . . . . . . . . . . 46

3.2.3 Semiparametric AH Latency Submodel . . . . . . . . 47

3.2.3.1 Linear Rank Method . . . . . . . . . . . . . 47

3.2.3.2 Kernel Smoothing Method . . . . . . . . . . 48

3.2.4 Semiparametric Transformation Latency Submodels . 49

3.2.5 Semiparametric Incidence Submodel . . . . . . . . . . 51

3.2.6 Semiparametric Spline-Based Cure Models . . . . . . 52

3.3 Nonparametric Mixture Cure Models . . . . . . . . . . . . . 54

3.3.1 Nonparametric Incidence Submodels . . . . . . . . . . 54

3.3.1.1 Kaplan-Meier Estimator . . . . . . . . . . . . 54

3.3.1.2 Generalized Kaplan-Meier Estimator . . . . . 55

3.3.2 Nonparametric Latency Submodels . . . . . . . . . . . 57

3.4 Semiparametric Non-Mixture Cure Models . . . . . . . . . . 58

3.4.1 Semiparametric PHC Model . . . . . . . . . . . . . . . 58

3.4.2 General Non-Mixture Cure Models . . . . . . . . . . . 59

3.5 Model Assessment . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 Residuals for Overall Model Fitting . . . . . . . . . . 62

3.5.2 Residuals for Latency Submodels . . . . . . . . . . . . 63

3.5.3 Assessing Cure Rate Prediction . . . . . . . . . . . . . 65

3.5.4 Concordance Measures for Cure Models . . . . . . . . 67

3.5.5 Testing Goodness-of-Fit of Parametric Cure Rate

Estimation . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.6 Variable Selection . . . . . . . . . . . . . . . . . . . . 70

3.6 Software and Applications . . . . . . . . . . . . . . . . . . . 72

3.6.1 R Package mixcure . . . . . . . . . . . . . . . . . . . . 72

3.6.2 R Package smcure . . . . . . . . . . . . . . . . . . . . 73

3.6.3 SAS Macro PSPMCM . . . . . . . . . . . . . . . . . . 74

3.6.4 R Package Survival . . . . . . . . . . . . . . . . . . . . 75

3.6.5 R Package npcure . . . . . . . . . . . . . . . . . . . . 77

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Cure Models for Multivariate Survival Data and Competing

Risks 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Marginal Cure Models . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Marginal Models with Working Independence . . . . . 84

4.2.2 Marginal Models with Specified Correlation Structures 86

4.3 Cure Models with Random Effects . . . . . . . . . . . . . . . 89

4.3.1 Mixture Cure Models with Frailties . . . . . . . . . . . 89

4.3.2 Non-Nixture Cure Model with Frailties . . . . . . . . . 92

4.4 Cure Models for Recurrent Event Data . . . . . . . . . . . . 93

4.5 Cure Models for Competing-Risks Survival Data . . . . . . . 96

4.5.1 Classical Approach . . . . . . . . . . . . . . . . . . . . 97

4.5.2 Vertical Approach . . . . . . . . . . . . . . . . . . . . 101

4.6 Software and Applications . . . . . . . . . . . . . . . . . . . 102

4.6.1 R Package geecure . . . . . . . . . . . . . . . . . . . . 102

4.6.2 R Package intcure . . . . . . . . . . . . . . . . . . . . 105

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Joint Modeling of Longitudinal and Survival Data with a

Cure Fraction 111

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Longitudinal and Survival Data with a Cured Fraction . . . 111

5.3 Joint Modeling Longitudinal and Survival Data with Shared

Random Effects . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Modeling Longitudinal Proportional Data in Joint Modeling 116

5.5 Joint Modeling by Including Longitudinal Effects in Cure

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Testing the Existence of Cured Subjects and Sufficient

Follow-up 127

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Tests for Existence of Cured Subjects . . . . . . . . . . . . . 128

6.2.1 Without Covariates . . . . . . . . . . . . . . . . . . . 128

6.2.1.1 Likelihood Ratio Test . . . . . . . . . . . . . 128

6.2.1.2 Score Test . . . . . . . . . . . . . . . . . . . 129

6.2.2 With Covariates . . . . . . . . . . . . . . . . . . . . . 130

6.3 Testing for Sufficient Follow-up . . . . . . . . . . . . . . . . . 131

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Bayesian Cure Model 135

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Flexible Cure Model with Latent Activation Schemes . . . . 135

7.2.1 Model Formulation and Inference . . . . . . . . . . . . 136

7.2.2 Bayesian Cure Model with Negative Binomial

Distribution . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2.3 Application . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3 Bayesian Cure Models with Generalized Modified Weibull

Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.3.1 Model Formulation and Inference . . . . . . . . . . . . 144

7.3.2 Application . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4 Bayesian Mixture Cure Model with Spatially Correlated

Frailties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.4.1 Spatial Mixture Cure Model . . . . . . . . . . . . . . . 149

7.4.2 Application . . . . . . . . . . . . . . . . . . . . . . . . 152

7.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8 Analysis of Population-Based Cancer Survival Data 159

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.2 Population-Based Cancer Registry and Survival Data . . . . 160

8.3 Parametric Cure Models for Net Survival . . . . . . . . . . . 165

8.3.1 Flexible Parametric Survival Model . . . . . . . . . . 166

8.3.2 Flexible Parametric Cure Model . . . . . . . . . . . . 167

8.3.3 Software Implementations . . . . . . . . . . . . . . . . 168

8.4 Testing the Existence of Statistical Cure . . . . . . . . . . . 171

8.4.1 Testing Hypothesis of Non-Inferiority of Survival . . . 172

8.4.2 A Minimum Version of One-Sample Log-Rank Test . . 172

8.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.5.1 Weibull Mixture Cure Model for Grouped Survival

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.5.2 Analysis of Individually-Listed Colorectal Cancer

Relative Survival Data . . . . . . . . . . . . . . . . . . 178

8.5.3 Testing the Existence of Cure for Colorectal Cancer

Patients . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9 Design and Analysis of Cancer Clinical Trials 187

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.2 Testing Treatment Effects in the Presence of Cure . . . . . . 189

9.2.1 Comparison of Log-Rank Type Tests . . . . . . . . . . 191

9.2.2 Sample Size for the Weighted Log-Rank Test under the

Proportional Hazards Cure Model . . . . . . . . . . . 194

9.2.3 Power and Sample Size in the Presence of Delayed Onset

of Treatment Effect and Cure . . . . . . . . . . . . . . 199

9.3 Some Design Issues in Clinical Trials with Cure . . . . . . . 204

9.3.1 Cure Modeling in Real-Time Prediction . . . . . . . . 204

9.3.2 Futility Analysis of Survival Data with Cure . . . . . 206

9.3.2.1 Conditional Power for Mixture Cure Models 207

9.3.2.2 Conditional Power for Non-Mixture Cure

Models . . . . . . . . . . . . . . . . . . . . . 210

9.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9.4.1 Sample Size Calculation for Trial Design . . . . . . . . 216

9.4.2 Predicting Future Number of Events . . . . . . . . . . 218

9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Bibliography 221

Index 247

This book is US$10
To get free sample pages OR Buy this book


Share this Book!

Leave a Comment


This site uses Akismet to reduce spam. Learn how your comment data is processed.